This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F mapping polynomials p to their subring evaluation at a given point X is a ring homomorphism. (Contributed by Thierry Arnoux, 8-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1maprhm.q | ⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) | |
| evls1maprhm.p | ⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) | ||
| evls1maprhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evls1maprhm.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| evls1maprhm.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evls1maprhm.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| evls1maprhm.y | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| evls1maprhm.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) | ||
| Assertion | evls1maprhm | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1maprhm.q | ⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) | |
| 2 | evls1maprhm.p | ⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) | |
| 3 | evls1maprhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | evls1maprhm.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 5 | evls1maprhm.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 6 | evls1maprhm.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | evls1maprhm.y | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | evls1maprhm.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) | |
| 9 | eqid | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) | |
| 10 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 12 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 13 | eqid | ⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) | |
| 14 | 13 | subrgcrng | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑅 ↾s 𝑆 ) ∈ CRing ) |
| 15 | 5 6 14 | syl2anc | ⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ CRing ) |
| 16 | 2 | ply1crng | ⊢ ( ( 𝑅 ↾s 𝑆 ) ∈ CRing → 𝑃 ∈ CRing ) |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
| 18 | 17 | crngringd | ⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 19 | 5 | crngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 20 | fveq2 | ⊢ ( 𝑝 = ( 1r ‘ 𝑃 ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ) | |
| 21 | 20 | fveq1d | ⊢ ( 𝑝 = ( 1r ‘ 𝑃 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝑋 ) ) |
| 22 | 4 9 | ringidcl | ⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ 𝑈 ) |
| 23 | 18 22 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ 𝑈 ) |
| 24 | fvexd | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝑋 ) ∈ V ) | |
| 25 | 8 21 23 24 | fvmptd3 | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝑋 ) ) |
| 26 | 13 10 | subrg1 | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 27 | 6 26 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 28 | 27 | fveq2d | ⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) |
| 29 | 15 | crngringd | ⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ Ring ) |
| 30 | eqid | ⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) | |
| 31 | eqid | ⊢ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) = ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) | |
| 32 | 2 30 31 9 | ply1scl1 | ⊢ ( ( 𝑅 ↾s 𝑆 ) ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) = ( 1r ‘ 𝑃 ) ) |
| 33 | 29 32 | syl | ⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) = ( 1r ‘ 𝑃 ) ) |
| 34 | 28 33 | eqtr2d | ⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
| 35 | 34 | fveq2d | ⊢ ( 𝜑 → ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) = ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 36 | 35 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑋 ) ) |
| 37 | 10 | subrg1cl | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
| 38 | 6 37 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
| 39 | 1 2 13 3 30 5 6 38 7 | evls1scafv | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 40 | 25 36 39 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( 1r ‘ 𝑅 ) ) |
| 41 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑅 ∈ CRing ) |
| 42 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 43 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑞 ∈ 𝑈 ) | |
| 44 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑟 ∈ 𝑈 ) | |
| 45 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑋 ∈ 𝐵 ) |
| 46 | 1 3 2 13 4 11 12 41 42 43 44 45 | evls1muld | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) = ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) ) |
| 47 | fveq2 | ⊢ ( 𝑝 = ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ) | |
| 48 | 47 | fveq1d | ⊢ ( 𝑝 = ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ) |
| 49 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑃 ∈ Ring ) |
| 50 | 4 11 49 43 44 | ringcld | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ∈ 𝑈 ) |
| 51 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ∈ V ) | |
| 52 | 8 48 50 51 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ) |
| 53 | fveq2 | ⊢ ( 𝑝 = 𝑞 → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ 𝑞 ) ) | |
| 54 | 53 | fveq1d | ⊢ ( 𝑝 = 𝑞 → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ) |
| 55 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ∈ V ) | |
| 56 | 8 54 43 55 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ 𝑞 ) = ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ) |
| 57 | fveq2 | ⊢ ( 𝑝 = 𝑟 → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ 𝑟 ) ) | |
| 58 | 57 | fveq1d | ⊢ ( 𝑝 = 𝑟 → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) |
| 59 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ∈ V ) | |
| 60 | 8 58 44 59 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ 𝑟 ) = ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) |
| 61 | 56 60 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) = ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) ) |
| 62 | 46 52 61 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) ) |
| 63 | eqid | ⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) | |
| 64 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 65 | eqid | ⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) | |
| 66 | 1 3 2 13 4 65 5 6 | ressply1evl | ⊢ ( 𝜑 → 𝑂 = ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ) |
| 67 | 66 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑂 = ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ) |
| 68 | 67 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑂 ‘ 𝑝 ) = ( ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ‘ 𝑝 ) ) |
| 69 | simpr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑝 ∈ 𝑈 ) | |
| 70 | 69 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ‘ 𝑝 ) = ( ( eval1 ‘ 𝑅 ) ‘ 𝑝 ) ) |
| 71 | 68 70 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑂 ‘ 𝑝 ) = ( ( eval1 ‘ 𝑅 ) ‘ 𝑝 ) ) |
| 72 | 71 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑝 ) ‘ 𝑋 ) ) |
| 73 | eqid | ⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) | |
| 74 | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) | |
| 75 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑅 ∈ CRing ) |
| 76 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑋 ∈ 𝐵 ) |
| 77 | eqid | ⊢ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) = ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) | |
| 78 | eqid | ⊢ ( Base ‘ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) = ( Base ‘ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) | |
| 79 | 73 13 2 4 6 77 78 74 | ressply1bas2 | ⊢ ( 𝜑 → 𝑈 = ( ( Base ‘ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ) |
| 80 | inss2 | ⊢ ( ( Base ‘ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) | |
| 81 | 79 80 | eqsstrdi | ⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 82 | 81 | sselda | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑝 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 83 | 65 73 3 74 75 76 82 | fveval1fvcl | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑝 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 84 | 72 83 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 85 | 84 8 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝑈 ⟶ 𝐵 ) |
| 86 | 1 3 2 13 4 63 64 41 42 43 44 45 | evls1addd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) = ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) ) |
| 87 | fveq2 | ⊢ ( 𝑝 = ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ) | |
| 88 | 87 | fveq1d | ⊢ ( 𝑝 = ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ) |
| 89 | 49 | ringgrpd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑃 ∈ Grp ) |
| 90 | 4 63 89 43 44 | grpcld | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ∈ 𝑈 ) |
| 91 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ∈ V ) | |
| 92 | 8 88 90 91 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ) |
| 93 | 56 60 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) = ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) ) |
| 94 | 86 92 93 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) ) |
| 95 | 4 9 10 11 12 18 19 40 62 3 63 64 85 94 | isrhmd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) ) |