This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F mapping polynomials p to their subring evaluation at a given point A is a module homomorphism, when considering the subring algebra. (Contributed by Thierry Arnoux, 25-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1maprhm.q | |- O = ( R evalSub1 S ) |
|
| evls1maprhm.p | |- P = ( Poly1 ` ( R |`s S ) ) |
||
| evls1maprhm.b | |- B = ( Base ` R ) |
||
| evls1maprhm.u | |- U = ( Base ` P ) |
||
| evls1maprhm.r | |- ( ph -> R e. CRing ) |
||
| evls1maprhm.s | |- ( ph -> S e. ( SubRing ` R ) ) |
||
| evls1maprhm.y | |- ( ph -> X e. B ) |
||
| evls1maprhm.f | |- F = ( p e. U |-> ( ( O ` p ) ` X ) ) |
||
| evls1maplmhm.1 | |- A = ( ( subringAlg ` R ) ` S ) |
||
| Assertion | evls1maplmhm | |- ( ph -> F e. ( P LMHom A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1maprhm.q | |- O = ( R evalSub1 S ) |
|
| 2 | evls1maprhm.p | |- P = ( Poly1 ` ( R |`s S ) ) |
|
| 3 | evls1maprhm.b | |- B = ( Base ` R ) |
|
| 4 | evls1maprhm.u | |- U = ( Base ` P ) |
|
| 5 | evls1maprhm.r | |- ( ph -> R e. CRing ) |
|
| 6 | evls1maprhm.s | |- ( ph -> S e. ( SubRing ` R ) ) |
|
| 7 | evls1maprhm.y | |- ( ph -> X e. B ) |
|
| 8 | evls1maprhm.f | |- F = ( p e. U |-> ( ( O ` p ) ` X ) ) |
|
| 9 | evls1maplmhm.1 | |- A = ( ( subringAlg ` R ) ` S ) |
|
| 10 | eqid | |- ( R |`s S ) = ( R |`s S ) |
|
| 11 | 10 | subrgring | |- ( S e. ( SubRing ` R ) -> ( R |`s S ) e. Ring ) |
| 12 | 6 11 | syl | |- ( ph -> ( R |`s S ) e. Ring ) |
| 13 | 2 | ply1lmod | |- ( ( R |`s S ) e. Ring -> P e. LMod ) |
| 14 | 12 13 | syl | |- ( ph -> P e. LMod ) |
| 15 | 9 | sralmod | |- ( S e. ( SubRing ` R ) -> A e. LMod ) |
| 16 | 6 15 | syl | |- ( ph -> A e. LMod ) |
| 17 | 1 2 3 4 5 6 7 8 | evls1maprhm | |- ( ph -> F e. ( P RingHom R ) ) |
| 18 | rhmghm | |- ( F e. ( P RingHom R ) -> F e. ( P GrpHom R ) ) |
|
| 19 | 17 18 | syl | |- ( ph -> F e. ( P GrpHom R ) ) |
| 20 | 4 | a1i | |- ( ph -> U = ( Base ` P ) ) |
| 21 | 3 | a1i | |- ( ph -> B = ( Base ` R ) ) |
| 22 | 9 | a1i | |- ( ph -> A = ( ( subringAlg ` R ) ` S ) ) |
| 23 | 3 | subrgss | |- ( S e. ( SubRing ` R ) -> S C_ B ) |
| 24 | 6 23 | syl | |- ( ph -> S C_ B ) |
| 25 | 24 3 | sseqtrdi | |- ( ph -> S C_ ( Base ` R ) ) |
| 26 | 22 25 | srabase | |- ( ph -> ( Base ` R ) = ( Base ` A ) ) |
| 27 | 3 26 | eqtrid | |- ( ph -> B = ( Base ` A ) ) |
| 28 | eqidd | |- ( ( ph /\ ( x e. U /\ y e. U ) ) -> ( x ( +g ` P ) y ) = ( x ( +g ` P ) y ) ) |
|
| 29 | 22 25 | sraaddg | |- ( ph -> ( +g ` R ) = ( +g ` A ) ) |
| 30 | 29 | oveqdr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` A ) y ) ) |
| 31 | 20 21 20 27 28 30 | ghmpropd | |- ( ph -> ( P GrpHom R ) = ( P GrpHom A ) ) |
| 32 | 19 31 | eleqtrd | |- ( ph -> F e. ( P GrpHom A ) ) |
| 33 | 22 25 | srasca | |- ( ph -> ( R |`s S ) = ( Scalar ` A ) ) |
| 34 | ovex | |- ( R |`s S ) e. _V |
|
| 35 | 2 | ply1sca | |- ( ( R |`s S ) e. _V -> ( R |`s S ) = ( Scalar ` P ) ) |
| 36 | 34 35 | mp1i | |- ( ph -> ( R |`s S ) = ( Scalar ` P ) ) |
| 37 | 33 36 | eqtr3d | |- ( ph -> ( Scalar ` A ) = ( Scalar ` P ) ) |
| 38 | fveq2 | |- ( p = ( k ( .s ` P ) x ) -> ( O ` p ) = ( O ` ( k ( .s ` P ) x ) ) ) |
|
| 39 | 38 | fveq1d | |- ( p = ( k ( .s ` P ) x ) -> ( ( O ` p ) ` X ) = ( ( O ` ( k ( .s ` P ) x ) ) ` X ) ) |
| 40 | 14 | ad2antrr | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> P e. LMod ) |
| 41 | simplr | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> k e. ( Base ` ( Scalar ` P ) ) ) |
|
| 42 | simpr | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> x e. U ) |
|
| 43 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 44 | eqid | |- ( .s ` P ) = ( .s ` P ) |
|
| 45 | eqid | |- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
|
| 46 | 4 43 44 45 | lmodvscl | |- ( ( P e. LMod /\ k e. ( Base ` ( Scalar ` P ) ) /\ x e. U ) -> ( k ( .s ` P ) x ) e. U ) |
| 47 | 40 41 42 46 | syl3anc | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( k ( .s ` P ) x ) e. U ) |
| 48 | fvexd | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( ( O ` ( k ( .s ` P ) x ) ) ` X ) e. _V ) |
|
| 49 | 8 39 47 48 | fvmptd3 | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( F ` ( k ( .s ` P ) x ) ) = ( ( O ` ( k ( .s ` P ) x ) ) ` X ) ) |
| 50 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 51 | 5 | ad2antrr | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> R e. CRing ) |
| 52 | 6 | ad2antrr | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> S e. ( SubRing ` R ) ) |
| 53 | 10 3 | ressbas2 | |- ( S C_ B -> S = ( Base ` ( R |`s S ) ) ) |
| 54 | 24 53 | syl | |- ( ph -> S = ( Base ` ( R |`s S ) ) ) |
| 55 | 36 | fveq2d | |- ( ph -> ( Base ` ( R |`s S ) ) = ( Base ` ( Scalar ` P ) ) ) |
| 56 | 54 55 | eqtr2d | |- ( ph -> ( Base ` ( Scalar ` P ) ) = S ) |
| 57 | 56 | eqimssd | |- ( ph -> ( Base ` ( Scalar ` P ) ) C_ S ) |
| 58 | 57 | sselda | |- ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) -> k e. S ) |
| 59 | 58 | adantr | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> k e. S ) |
| 60 | 7 | ad2antrr | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> X e. B ) |
| 61 | 1 3 2 10 4 44 50 51 52 59 42 60 | evls1vsca | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( ( O ` ( k ( .s ` P ) x ) ) ` X ) = ( k ( .r ` R ) ( ( O ` x ) ` X ) ) ) |
| 62 | 22 25 | sravsca | |- ( ph -> ( .r ` R ) = ( .s ` A ) ) |
| 63 | 62 | ad2antrr | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( .r ` R ) = ( .s ` A ) ) |
| 64 | eqidd | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> k = k ) |
|
| 65 | fveq2 | |- ( p = x -> ( O ` p ) = ( O ` x ) ) |
|
| 66 | 65 | fveq1d | |- ( p = x -> ( ( O ` p ) ` X ) = ( ( O ` x ) ` X ) ) |
| 67 | fvexd | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( ( O ` x ) ` X ) e. _V ) |
|
| 68 | 8 66 42 67 | fvmptd3 | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( F ` x ) = ( ( O ` x ) ` X ) ) |
| 69 | 68 | eqcomd | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( ( O ` x ) ` X ) = ( F ` x ) ) |
| 70 | 63 64 69 | oveq123d | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( k ( .r ` R ) ( ( O ` x ) ` X ) ) = ( k ( .s ` A ) ( F ` x ) ) ) |
| 71 | 49 61 70 | 3eqtrd | |- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( F ` ( k ( .s ` P ) x ) ) = ( k ( .s ` A ) ( F ` x ) ) ) |
| 72 | 71 | anasss | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ x e. U ) ) -> ( F ` ( k ( .s ` P ) x ) ) = ( k ( .s ` A ) ( F ` x ) ) ) |
| 73 | 72 | ralrimivva | |- ( ph -> A. k e. ( Base ` ( Scalar ` P ) ) A. x e. U ( F ` ( k ( .s ` P ) x ) ) = ( k ( .s ` A ) ( F ` x ) ) ) |
| 74 | eqid | |- ( Scalar ` A ) = ( Scalar ` A ) |
|
| 75 | eqid | |- ( .s ` A ) = ( .s ` A ) |
|
| 76 | 43 74 45 4 44 75 | islmhm | |- ( F e. ( P LMHom A ) <-> ( ( P e. LMod /\ A e. LMod ) /\ ( F e. ( P GrpHom A ) /\ ( Scalar ` A ) = ( Scalar ` P ) /\ A. k e. ( Base ` ( Scalar ` P ) ) A. x e. U ( F ` ( k ( .s ` P ) x ) ) = ( k ( .s ` A ) ( F ` x ) ) ) ) ) |
| 77 | 76 | biimpri | |- ( ( ( P e. LMod /\ A e. LMod ) /\ ( F e. ( P GrpHom A ) /\ ( Scalar ` A ) = ( Scalar ` P ) /\ A. k e. ( Base ` ( Scalar ` P ) ) A. x e. U ( F ` ( k ( .s ` P ) x ) ) = ( k ( .s ` A ) ( F ` x ) ) ) ) -> F e. ( P LMHom A ) ) |
| 78 | 14 16 32 37 73 77 | syl23anc | |- ( ph -> F e. ( P LMHom A ) ) |