This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmpropd.a | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐽 ) ) | |
| ghmpropd.b | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝐾 ) ) | ||
| ghmpropd.c | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| ghmpropd.d | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝑀 ) ) | ||
| ghmpropd.e | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| ghmpropd.f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | ||
| Assertion | ghmpropd | ⊢ ( 𝜑 → ( 𝐽 GrpHom 𝐾 ) = ( 𝐿 GrpHom 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmpropd.a | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐽 ) ) | |
| 2 | ghmpropd.b | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝐾 ) ) | |
| 3 | ghmpropd.c | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 4 | ghmpropd.d | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝑀 ) ) | |
| 5 | ghmpropd.e | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 6 | ghmpropd.f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | |
| 7 | 1 3 5 | grppropd | ⊢ ( 𝜑 → ( 𝐽 ∈ Grp ↔ 𝐿 ∈ Grp ) ) |
| 8 | 2 4 6 | grppropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Grp ↔ 𝑀 ∈ Grp ) ) |
| 9 | 7 8 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐽 ∈ Grp ∧ 𝐾 ∈ Grp ) ↔ ( 𝐿 ∈ Grp ∧ 𝑀 ∈ Grp ) ) ) |
| 10 | 1 2 3 4 5 6 | mhmpropd | ⊢ ( 𝜑 → ( 𝐽 MndHom 𝐾 ) = ( 𝐿 MndHom 𝑀 ) ) |
| 11 | 10 | eleq2d | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐽 MndHom 𝐾 ) ↔ 𝑓 ∈ ( 𝐿 MndHom 𝑀 ) ) ) |
| 12 | 9 11 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝐽 ∈ Grp ∧ 𝐾 ∈ Grp ) ∧ 𝑓 ∈ ( 𝐽 MndHom 𝐾 ) ) ↔ ( ( 𝐿 ∈ Grp ∧ 𝑀 ∈ Grp ) ∧ 𝑓 ∈ ( 𝐿 MndHom 𝑀 ) ) ) ) |
| 13 | ghmgrp1 | ⊢ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) → 𝐽 ∈ Grp ) | |
| 14 | ghmgrp2 | ⊢ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) → 𝐾 ∈ Grp ) | |
| 15 | 13 14 | jca | ⊢ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) → ( 𝐽 ∈ Grp ∧ 𝐾 ∈ Grp ) ) |
| 16 | ghmmhmb | ⊢ ( ( 𝐽 ∈ Grp ∧ 𝐾 ∈ Grp ) → ( 𝐽 GrpHom 𝐾 ) = ( 𝐽 MndHom 𝐾 ) ) | |
| 17 | 16 | eleq2d | ⊢ ( ( 𝐽 ∈ Grp ∧ 𝐾 ∈ Grp ) → ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ↔ 𝑓 ∈ ( 𝐽 MndHom 𝐾 ) ) ) |
| 18 | 15 17 | biadanii | ⊢ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ↔ ( ( 𝐽 ∈ Grp ∧ 𝐾 ∈ Grp ) ∧ 𝑓 ∈ ( 𝐽 MndHom 𝐾 ) ) ) |
| 19 | ghmgrp1 | ⊢ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) → 𝐿 ∈ Grp ) | |
| 20 | ghmgrp2 | ⊢ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) → 𝑀 ∈ Grp ) | |
| 21 | 19 20 | jca | ⊢ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) → ( 𝐿 ∈ Grp ∧ 𝑀 ∈ Grp ) ) |
| 22 | ghmmhmb | ⊢ ( ( 𝐿 ∈ Grp ∧ 𝑀 ∈ Grp ) → ( 𝐿 GrpHom 𝑀 ) = ( 𝐿 MndHom 𝑀 ) ) | |
| 23 | 22 | eleq2d | ⊢ ( ( 𝐿 ∈ Grp ∧ 𝑀 ∈ Grp ) → ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ↔ 𝑓 ∈ ( 𝐿 MndHom 𝑀 ) ) ) |
| 24 | 21 23 | biadanii | ⊢ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ↔ ( ( 𝐿 ∈ Grp ∧ 𝑀 ∈ Grp ) ∧ 𝑓 ∈ ( 𝐿 MndHom 𝑀 ) ) ) |
| 25 | 12 18 24 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ↔ 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ) ) |
| 26 | 25 | eqrdv | ⊢ ( 𝜑 → ( 𝐽 GrpHom 𝐾 ) = ( 𝐿 GrpHom 𝑀 ) ) |