This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F mapping polynomials p to their subring evaluation at a given point A takes all values in the subring S . (Contributed by Thierry Arnoux, 25-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1maprhm.q | ⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) | |
| evls1maprhm.p | ⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) | ||
| evls1maprhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evls1maprhm.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| evls1maprhm.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evls1maprhm.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| evls1maprhm.y | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| evls1maprhm.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) | ||
| Assertion | evls1maprnss | ⊢ ( 𝜑 → 𝑆 ⊆ ran 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1maprhm.q | ⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) | |
| 2 | evls1maprhm.p | ⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) | |
| 3 | evls1maprhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | evls1maprhm.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 5 | evls1maprhm.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 6 | evls1maprhm.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | evls1maprhm.y | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | evls1maprhm.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) | |
| 9 | eqid | ⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) | |
| 10 | eqid | ⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) = ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) | |
| 11 | eqid | ⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) | |
| 12 | eqid | ⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) | |
| 13 | 9 10 11 2 6 12 | subrg1ascl | ⊢ ( 𝜑 → ( algSc ‘ 𝑃 ) = ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ↾ 𝑆 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( algSc ‘ 𝑃 ) = ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ↾ 𝑆 ) ) |
| 15 | 14 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) = ( ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ↾ 𝑆 ) ‘ 𝑦 ) ) |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) | |
| 17 | 16 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ↾ 𝑆 ) ‘ 𝑦 ) = ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑦 ) ) |
| 18 | 15 17 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) = ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑦 ) ) |
| 19 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 20 | 10 11 9 2 4 19 16 | asclply1subcl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑦 ) ∈ 𝑈 ) |
| 21 | 18 20 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ∈ 𝑈 ) |
| 22 | fveq2 | ⊢ ( 𝑝 = ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ) | |
| 23 | 22 | fveq1d | ⊢ ( 𝑝 = ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) ) |
| 24 | 23 | eqeq2d | ⊢ ( 𝑝 = ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) → ( 𝑦 = ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ↔ 𝑦 = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑝 = ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) → ( 𝑦 = ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ↔ 𝑦 = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) ) ) |
| 26 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑅 ∈ CRing ) |
| 27 | 1 2 11 3 12 26 19 16 | evls1sca | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) = ( 𝐵 × { 𝑦 } ) ) |
| 28 | 27 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) = ( ( 𝐵 × { 𝑦 } ) ‘ 𝑋 ) ) |
| 29 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑋 ∈ 𝐵 ) |
| 30 | vex | ⊢ 𝑦 ∈ V | |
| 31 | 30 | fvconst2 | ⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝐵 × { 𝑦 } ) ‘ 𝑋 ) = 𝑦 ) |
| 32 | 29 31 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐵 × { 𝑦 } ) ‘ 𝑋 ) = 𝑦 ) |
| 33 | 28 32 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) ) |
| 34 | 21 25 33 | rspcedvd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ∃ 𝑝 ∈ 𝑈 𝑦 = ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) |
| 35 | 8 34 16 | elrnmptd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ran 𝐹 ) |
| 36 | 35 | ex | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ran 𝐹 ) ) |
| 37 | 36 | ssrdv | ⊢ ( 𝜑 → 𝑆 ⊆ ran 𝐹 ) |