This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation of a scalar product of polynomials. (Contributed by Thierry Arnoux, 25-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressply1evl2.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| ressply1evl2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| ressply1evl2.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | ||
| ressply1evl2.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| ressply1evl2.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| evls1vsca.1 | ⊢ × = ( ·𝑠 ‘ 𝑊 ) | ||
| evls1vsca.2 | ⊢ · = ( .r ‘ 𝑆 ) | ||
| evls1vsca.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evls1vsca.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evls1vsca.m | ⊢ ( 𝜑 → 𝐴 ∈ 𝑅 ) | ||
| evls1vsca.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) | ||
| evls1vsca.y | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | ||
| Assertion | evls1vsca | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 × 𝑁 ) ) ‘ 𝐶 ) = ( 𝐴 · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1evl2.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| 2 | ressply1evl2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 3 | ressply1evl2.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | |
| 4 | ressply1evl2.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | ressply1evl2.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 6 | evls1vsca.1 | ⊢ × = ( ·𝑠 ‘ 𝑊 ) | |
| 7 | evls1vsca.2 | ⊢ · = ( .r ‘ 𝑆 ) | |
| 8 | evls1vsca.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 9 | evls1vsca.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 10 | evls1vsca.m | ⊢ ( 𝜑 → 𝐴 ∈ 𝑅 ) | |
| 11 | evls1vsca.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) | |
| 12 | evls1vsca.y | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | |
| 13 | id | ⊢ ( 𝜑 → 𝜑 ) | |
| 14 | eqid | ⊢ ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ 𝑆 ) | |
| 15 | eqid | ⊢ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) = ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) | |
| 16 | 14 4 3 5 9 15 | ressply1vsca | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑅 ∧ 𝑁 ∈ 𝐵 ) ) → ( 𝐴 ( ·𝑠 ‘ 𝑊 ) 𝑁 ) = ( 𝐴 ( ·𝑠 ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) 𝑁 ) ) |
| 17 | 13 10 11 16 | syl12anc | ⊢ ( 𝜑 → ( 𝐴 ( ·𝑠 ‘ 𝑊 ) 𝑁 ) = ( 𝐴 ( ·𝑠 ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) 𝑁 ) ) |
| 18 | 6 | oveqi | ⊢ ( 𝐴 × 𝑁 ) = ( 𝐴 ( ·𝑠 ‘ 𝑊 ) 𝑁 ) |
| 19 | 5 | fvexi | ⊢ 𝐵 ∈ V |
| 20 | eqid | ⊢ ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) = ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) | |
| 21 | 15 20 | ressvsca | ⊢ ( 𝐵 ∈ V → ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) = ( ·𝑠 ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) ) |
| 22 | 19 21 | ax-mp | ⊢ ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) = ( ·𝑠 ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) |
| 23 | 22 | oveqi | ⊢ ( 𝐴 ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) = ( 𝐴 ( ·𝑠 ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) 𝑁 ) |
| 24 | 17 18 23 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝐴 × 𝑁 ) = ( 𝐴 ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) |
| 25 | 24 | fveq2d | ⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 × 𝑁 ) ) = ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ) |
| 26 | 25 | fveq1d | ⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 × 𝑁 ) ) ‘ 𝐶 ) = ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) ) |
| 27 | eqid | ⊢ ( eval1 ‘ 𝑆 ) = ( eval1 ‘ 𝑆 ) | |
| 28 | 1 2 3 4 5 27 8 9 | ressply1evl | ⊢ ( 𝜑 → 𝑄 = ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ) |
| 29 | 28 | fveq1d | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 × 𝑁 ) ) = ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ ( 𝐴 × 𝑁 ) ) ) |
| 30 | 4 | subrgcrng | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing ) |
| 31 | 8 9 30 | syl2anc | ⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
| 32 | crngring | ⊢ ( 𝑈 ∈ CRing → 𝑈 ∈ Ring ) | |
| 33 | 3 | ply1lmod | ⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ LMod ) |
| 34 | 31 32 33 | 3syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 35 | 2 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
| 36 | 9 35 | syl | ⊢ ( 𝜑 → 𝑅 ⊆ 𝐾 ) |
| 37 | 4 2 | ressbas2 | ⊢ ( 𝑅 ⊆ 𝐾 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 38 | 36 37 | syl | ⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 39 | 4 | ovexi | ⊢ 𝑈 ∈ V |
| 40 | 3 | ply1sca | ⊢ ( 𝑈 ∈ V → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
| 41 | 39 40 | mp1i | ⊢ ( 𝜑 → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
| 42 | 41 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 43 | 38 42 | eqtrd | ⊢ ( 𝜑 → 𝑅 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 44 | 10 43 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 45 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 46 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 47 | 5 45 6 46 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑁 ∈ 𝐵 ) → ( 𝐴 × 𝑁 ) ∈ 𝐵 ) |
| 48 | 34 44 11 47 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 × 𝑁 ) ∈ 𝐵 ) |
| 49 | 48 | fvresd | ⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ ( 𝐴 × 𝑁 ) ) = ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 × 𝑁 ) ) ) |
| 50 | 29 49 | eqtr2d | ⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 × 𝑁 ) ) = ( 𝑄 ‘ ( 𝐴 × 𝑁 ) ) ) |
| 51 | 50 | fveq1d | ⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 × 𝑁 ) ) ‘ 𝐶 ) = ( ( 𝑄 ‘ ( 𝐴 × 𝑁 ) ) ‘ 𝐶 ) ) |
| 52 | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) | |
| 53 | eqid | ⊢ ( PwSer1 ‘ 𝑈 ) = ( PwSer1 ‘ 𝑈 ) | |
| 54 | eqid | ⊢ ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) | |
| 55 | 14 4 3 5 9 53 54 52 | ressply1bas2 | ⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) ) |
| 56 | inss2 | ⊢ ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) | |
| 57 | 55 56 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
| 58 | 57 11 | sseldd | ⊢ ( 𝜑 → 𝑁 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
| 59 | 28 | fveq1d | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) = ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ 𝑁 ) ) |
| 60 | 11 | fvresd | ⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ 𝑁 ) = ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) ) |
| 61 | 59 60 | eqtr2d | ⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) = ( 𝑄 ‘ 𝑁 ) ) |
| 62 | 61 | fveq1d | ⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) ‘ 𝐶 ) = ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) |
| 63 | 58 62 | jca | ⊢ ( 𝜑 → ( 𝑁 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) ‘ 𝐶 ) = ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 64 | 36 10 | sseldd | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 65 | 27 14 2 52 8 12 63 64 20 7 | evl1vsd | ⊢ ( 𝜑 → ( ( 𝐴 ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) = ( 𝐴 · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 66 | 65 | simprd | ⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) = ( 𝐴 · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 67 | 26 51 66 | 3eqtr3d | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 × 𝑁 ) ) ‘ 𝐶 ) = ( 𝐴 · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |