This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: II-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enfin2i | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ FinII → 𝐵 ∈ FinII ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren | ⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 2 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝒫 𝐵 → 𝑥 ⊆ 𝒫 𝐵 ) | |
| 3 | imauni | ⊢ ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) = ∪ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ( 𝑓 “ 𝑧 ) | |
| 4 | vex | ⊢ 𝑓 ∈ V | |
| 5 | 4 | imaex | ⊢ ( 𝑓 “ 𝑧 ) ∈ V |
| 6 | 5 | dfiun2 | ⊢ ∪ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ( 𝑓 “ 𝑧 ) = ∪ { 𝑤 ∣ ∃ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } 𝑤 = ( 𝑓 “ 𝑧 ) } |
| 7 | 3 6 | eqtri | ⊢ ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) = ∪ { 𝑤 ∣ ∃ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } 𝑤 = ( 𝑓 “ 𝑧 ) } |
| 8 | imaeq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑓 “ 𝑦 ) = ( 𝑓 “ 𝑧 ) ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑓 “ 𝑦 ) ∈ 𝑥 ↔ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ) |
| 10 | 9 | rexrab | ⊢ ( ∃ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } 𝑤 = ( 𝑓 “ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝒫 𝐴 ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) ) |
| 11 | eleq1 | ⊢ ( 𝑤 = ( 𝑓 “ 𝑧 ) → ( 𝑤 ∈ 𝑥 ↔ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ) | |
| 12 | 11 | biimparc | ⊢ ( ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) → 𝑤 ∈ 𝑥 ) |
| 13 | 12 | rexlimivw | ⊢ ( ∃ 𝑧 ∈ 𝒫 𝐴 ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) → 𝑤 ∈ 𝑥 ) |
| 14 | cnvimass | ⊢ ( ◡ 𝑓 “ 𝑤 ) ⊆ dom 𝑓 | |
| 15 | f1odm | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → dom 𝑓 = 𝐴 ) | |
| 16 | 15 | ad3antrrr | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → dom 𝑓 = 𝐴 ) |
| 17 | 14 16 | sseqtrid | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → ( ◡ 𝑓 “ 𝑤 ) ⊆ 𝐴 ) |
| 18 | 4 | cnvex | ⊢ ◡ 𝑓 ∈ V |
| 19 | 18 | imaex | ⊢ ( ◡ 𝑓 “ 𝑤 ) ∈ V |
| 20 | 19 | elpw | ⊢ ( ( ◡ 𝑓 “ 𝑤 ) ∈ 𝒫 𝐴 ↔ ( ◡ 𝑓 “ 𝑤 ) ⊆ 𝐴 ) |
| 21 | 17 20 | sylibr | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → ( ◡ 𝑓 “ 𝑤 ) ∈ 𝒫 𝐴 ) |
| 22 | f1ofo | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –onto→ 𝐵 ) | |
| 23 | 22 | ad3antrrr | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → 𝑓 : 𝐴 –onto→ 𝐵 ) |
| 24 | simprl | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → 𝑥 ⊆ 𝒫 𝐵 ) | |
| 25 | 24 | sselda | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → 𝑤 ∈ 𝒫 𝐵 ) |
| 26 | 25 | elpwid | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → 𝑤 ⊆ 𝐵 ) |
| 27 | foimacnv | ⊢ ( ( 𝑓 : 𝐴 –onto→ 𝐵 ∧ 𝑤 ⊆ 𝐵 ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) = 𝑤 ) | |
| 28 | 23 26 27 | syl2anc | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) = 𝑤 ) |
| 29 | 28 | eqcomd | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → 𝑤 = ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ) |
| 30 | simpr | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → 𝑤 ∈ 𝑥 ) | |
| 31 | 29 30 | eqeltrrd | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ∈ 𝑥 ) |
| 32 | imaeq2 | ⊢ ( 𝑧 = ( ◡ 𝑓 “ 𝑤 ) → ( 𝑓 “ 𝑧 ) = ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ) | |
| 33 | 32 | eleq1d | ⊢ ( 𝑧 = ( ◡ 𝑓 “ 𝑤 ) → ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ↔ ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ∈ 𝑥 ) ) |
| 34 | 32 | eqeq2d | ⊢ ( 𝑧 = ( ◡ 𝑓 “ 𝑤 ) → ( 𝑤 = ( 𝑓 “ 𝑧 ) ↔ 𝑤 = ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ) ) |
| 35 | 33 34 | anbi12d | ⊢ ( 𝑧 = ( ◡ 𝑓 “ 𝑤 ) → ( ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) ↔ ( ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ) ) ) |
| 36 | 35 | rspcev | ⊢ ( ( ( ◡ 𝑓 “ 𝑤 ) ∈ 𝒫 𝐴 ∧ ( ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ) ) → ∃ 𝑧 ∈ 𝒫 𝐴 ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) ) |
| 37 | 21 31 29 36 | syl12anc | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑧 ∈ 𝒫 𝐴 ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) ) |
| 38 | 37 | ex | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ∈ 𝒫 𝐴 ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) ) ) |
| 39 | 13 38 | impbid2 | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ( ∃ 𝑧 ∈ 𝒫 𝐴 ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) ↔ 𝑤 ∈ 𝑥 ) ) |
| 40 | 10 39 | bitrid | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ( ∃ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } 𝑤 = ( 𝑓 “ 𝑧 ) ↔ 𝑤 ∈ 𝑥 ) ) |
| 41 | 40 | eqabcdv | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → { 𝑤 ∣ ∃ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } 𝑤 = ( 𝑓 “ 𝑧 ) } = 𝑥 ) |
| 42 | 41 | unieqd | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ∪ { 𝑤 ∣ ∃ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } 𝑤 = ( 𝑓 “ 𝑧 ) } = ∪ 𝑥 ) |
| 43 | 7 42 | eqtrid | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) = ∪ 𝑥 ) |
| 44 | simplr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → 𝐴 ∈ FinII ) | |
| 45 | ssrab2 | ⊢ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ⊆ 𝒫 𝐴 | |
| 46 | 45 | a1i | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ⊆ 𝒫 𝐴 ) |
| 47 | simprrl | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → 𝑥 ≠ ∅ ) | |
| 48 | n0 | ⊢ ( 𝑥 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝑥 ) | |
| 49 | 47 48 | sylib | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ∃ 𝑤 𝑤 ∈ 𝑥 ) |
| 50 | imaeq2 | ⊢ ( 𝑦 = ( ◡ 𝑓 “ 𝑤 ) → ( 𝑓 “ 𝑦 ) = ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ) | |
| 51 | 50 | eleq1d | ⊢ ( 𝑦 = ( ◡ 𝑓 “ 𝑤 ) → ( ( 𝑓 “ 𝑦 ) ∈ 𝑥 ↔ ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ∈ 𝑥 ) ) |
| 52 | 51 | rspcev | ⊢ ( ( ( ◡ 𝑓 “ 𝑤 ) ∈ 𝒫 𝐴 ∧ ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ∈ 𝑥 ) → ∃ 𝑦 ∈ 𝒫 𝐴 ( 𝑓 “ 𝑦 ) ∈ 𝑥 ) |
| 53 | 21 31 52 | syl2anc | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑦 ∈ 𝒫 𝐴 ( 𝑓 “ 𝑦 ) ∈ 𝑥 ) |
| 54 | 49 53 | exlimddv | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ∃ 𝑦 ∈ 𝒫 𝐴 ( 𝑓 “ 𝑦 ) ∈ 𝑥 ) |
| 55 | rabn0 | ⊢ ( { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ≠ ∅ ↔ ∃ 𝑦 ∈ 𝒫 𝐴 ( 𝑓 “ 𝑦 ) ∈ 𝑥 ) | |
| 56 | 54 55 | sylibr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ≠ ∅ ) |
| 57 | 9 | elrab | ⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ↔ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ) |
| 58 | imaeq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑓 “ 𝑦 ) = ( 𝑓 “ 𝑤 ) ) | |
| 59 | 58 | eleq1d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑓 “ 𝑦 ) ∈ 𝑥 ↔ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) |
| 60 | 59 | elrab | ⊢ ( 𝑤 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ↔ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) |
| 61 | 57 60 | anbi12i | ⊢ ( ( 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∧ 𝑤 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ↔ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) |
| 62 | simprrr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → [⊊] Or 𝑥 ) | |
| 63 | 62 | adantr | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → [⊊] Or 𝑥 ) |
| 64 | simprlr | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) | |
| 65 | simprrr | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) | |
| 66 | sorpssi | ⊢ ( ( [⊊] Or 𝑥 ∧ ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) → ( ( 𝑓 “ 𝑧 ) ⊆ ( 𝑓 “ 𝑤 ) ∨ ( 𝑓 “ 𝑤 ) ⊆ ( 𝑓 “ 𝑧 ) ) ) | |
| 67 | 63 64 65 66 | syl12anc | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → ( ( 𝑓 “ 𝑧 ) ⊆ ( 𝑓 “ 𝑤 ) ∨ ( 𝑓 “ 𝑤 ) ⊆ ( 𝑓 “ 𝑧 ) ) ) |
| 68 | f1of1 | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –1-1→ 𝐵 ) | |
| 69 | 68 | ad3antrrr | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 70 | simprll | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → 𝑧 ∈ 𝒫 𝐴 ) | |
| 71 | 70 | elpwid | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → 𝑧 ⊆ 𝐴 ) |
| 72 | simprrl | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → 𝑤 ∈ 𝒫 𝐴 ) | |
| 73 | 72 | elpwid | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → 𝑤 ⊆ 𝐴 ) |
| 74 | f1imass | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ⊆ 𝐴 ) ) → ( ( 𝑓 “ 𝑧 ) ⊆ ( 𝑓 “ 𝑤 ) ↔ 𝑧 ⊆ 𝑤 ) ) | |
| 75 | 69 71 73 74 | syl12anc | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → ( ( 𝑓 “ 𝑧 ) ⊆ ( 𝑓 “ 𝑤 ) ↔ 𝑧 ⊆ 𝑤 ) ) |
| 76 | f1imass | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑤 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴 ) ) → ( ( 𝑓 “ 𝑤 ) ⊆ ( 𝑓 “ 𝑧 ) ↔ 𝑤 ⊆ 𝑧 ) ) | |
| 77 | 69 73 71 76 | syl12anc | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → ( ( 𝑓 “ 𝑤 ) ⊆ ( 𝑓 “ 𝑧 ) ↔ 𝑤 ⊆ 𝑧 ) ) |
| 78 | 75 77 | orbi12d | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → ( ( ( 𝑓 “ 𝑧 ) ⊆ ( 𝑓 “ 𝑤 ) ∨ ( 𝑓 “ 𝑤 ) ⊆ ( 𝑓 “ 𝑧 ) ) ↔ ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) |
| 79 | 67 78 | mpbid | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) |
| 80 | 61 79 | sylan2b | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∧ 𝑤 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ) → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) |
| 81 | 80 | ralrimivva | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ∀ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∀ 𝑤 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) |
| 82 | sorpss | ⊢ ( [⊊] Or { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ↔ ∀ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∀ 𝑤 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) | |
| 83 | 81 82 | sylibr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → [⊊] Or { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) |
| 84 | fin2i | ⊢ ( ( ( 𝐴 ∈ FinII ∧ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ⊆ 𝒫 𝐴 ) ∧ ( { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ≠ ∅ ∧ [⊊] Or { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ) → ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) | |
| 85 | 44 46 56 83 84 | syl22anc | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) |
| 86 | imaeq2 | ⊢ ( 𝑧 = ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } → ( 𝑓 “ 𝑧 ) = ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ) | |
| 87 | 86 | eleq1d | ⊢ ( 𝑧 = ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } → ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ↔ ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ∈ 𝑥 ) ) |
| 88 | 9 | cbvrabv | ⊢ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } = { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑧 ) ∈ 𝑥 } |
| 89 | 87 88 | elrab2 | ⊢ ( ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ↔ ( ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∈ 𝒫 𝐴 ∧ ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ∈ 𝑥 ) ) |
| 90 | 89 | simprbi | ⊢ ( ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } → ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ∈ 𝑥 ) |
| 91 | 85 90 | syl | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ∈ 𝑥 ) |
| 92 | 43 91 | eqeltrrd | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ∪ 𝑥 ∈ 𝑥 ) |
| 93 | 92 | expr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ 𝑥 ⊆ 𝒫 𝐵 ) → ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) |
| 94 | 2 93 | sylan2 | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) |
| 95 | 94 | ralrimiva | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) → ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) |
| 96 | 95 | ex | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐴 ∈ FinII → ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) ) |
| 97 | 96 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐴 ∈ FinII → ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) ) |
| 98 | 1 97 | sylbi | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ FinII → ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) ) |
| 99 | relen | ⊢ Rel ≈ | |
| 100 | 99 | brrelex2i | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
| 101 | isfin2 | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ FinII ↔ ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) ) | |
| 102 | 100 101 | syl | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐵 ∈ FinII ↔ ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) ) |
| 103 | 98 102 | sylibrd | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ FinII → 𝐵 ∈ FinII ) ) |