This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express strict ordering under proper subsets, i.e. the notion of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sorpss | ⊢ ( [⊊] Or 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | porpss | ⊢ [⊊] Po 𝐴 | |
| 2 | 1 | biantrur | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥 ) ↔ ( [⊊] Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥 ) ) ) |
| 3 | sspsstri | ⊢ ( ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ↔ ( 𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥 ) ) | |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | 4 | brrpss | ⊢ ( 𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦 ) |
| 6 | biid | ⊢ ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) | |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | 7 | brrpss | ⊢ ( 𝑦 [⊊] 𝑥 ↔ 𝑦 ⊊ 𝑥 ) |
| 9 | 5 6 8 | 3orbi123i | ⊢ ( ( 𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥 ) ↔ ( 𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥 ) ) |
| 10 | 3 9 | bitr4i | ⊢ ( ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ↔ ( 𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥 ) ) |
| 11 | 10 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥 ) ) |
| 12 | df-so | ⊢ ( [⊊] Or 𝐴 ↔ ( [⊊] Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥 ) ) ) | |
| 13 | 2 11 12 | 3bitr4ri | ⊢ ( [⊊] Or 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) |