This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: II-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enfin2i | |- ( A ~~ B -> ( A e. Fin2 -> B e. Fin2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren | |- ( A ~~ B <-> E. f f : A -1-1-onto-> B ) |
|
| 2 | elpwi | |- ( x e. ~P ~P B -> x C_ ~P B ) |
|
| 3 | imauni | |- ( f " U. { y e. ~P A | ( f " y ) e. x } ) = U_ z e. { y e. ~P A | ( f " y ) e. x } ( f " z ) |
|
| 4 | vex | |- f e. _V |
|
| 5 | 4 | imaex | |- ( f " z ) e. _V |
| 6 | 5 | dfiun2 | |- U_ z e. { y e. ~P A | ( f " y ) e. x } ( f " z ) = U. { w | E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) } |
| 7 | 3 6 | eqtri | |- ( f " U. { y e. ~P A | ( f " y ) e. x } ) = U. { w | E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) } |
| 8 | imaeq2 | |- ( y = z -> ( f " y ) = ( f " z ) ) |
|
| 9 | 8 | eleq1d | |- ( y = z -> ( ( f " y ) e. x <-> ( f " z ) e. x ) ) |
| 10 | 9 | rexrab | |- ( E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) <-> E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) ) |
| 11 | eleq1 | |- ( w = ( f " z ) -> ( w e. x <-> ( f " z ) e. x ) ) |
|
| 12 | 11 | biimparc | |- ( ( ( f " z ) e. x /\ w = ( f " z ) ) -> w e. x ) |
| 13 | 12 | rexlimivw | |- ( E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) -> w e. x ) |
| 14 | cnvimass | |- ( `' f " w ) C_ dom f |
|
| 15 | f1odm | |- ( f : A -1-1-onto-> B -> dom f = A ) |
|
| 16 | 15 | ad3antrrr | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> dom f = A ) |
| 17 | 14 16 | sseqtrid | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> ( `' f " w ) C_ A ) |
| 18 | 4 | cnvex | |- `' f e. _V |
| 19 | 18 | imaex | |- ( `' f " w ) e. _V |
| 20 | 19 | elpw | |- ( ( `' f " w ) e. ~P A <-> ( `' f " w ) C_ A ) |
| 21 | 17 20 | sylibr | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> ( `' f " w ) e. ~P A ) |
| 22 | f1ofo | |- ( f : A -1-1-onto-> B -> f : A -onto-> B ) |
|
| 23 | 22 | ad3antrrr | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> f : A -onto-> B ) |
| 24 | simprl | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> x C_ ~P B ) |
|
| 25 | 24 | sselda | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> w e. ~P B ) |
| 26 | 25 | elpwid | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> w C_ B ) |
| 27 | foimacnv | |- ( ( f : A -onto-> B /\ w C_ B ) -> ( f " ( `' f " w ) ) = w ) |
|
| 28 | 23 26 27 | syl2anc | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> ( f " ( `' f " w ) ) = w ) |
| 29 | 28 | eqcomd | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> w = ( f " ( `' f " w ) ) ) |
| 30 | simpr | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> w e. x ) |
|
| 31 | 29 30 | eqeltrrd | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> ( f " ( `' f " w ) ) e. x ) |
| 32 | imaeq2 | |- ( z = ( `' f " w ) -> ( f " z ) = ( f " ( `' f " w ) ) ) |
|
| 33 | 32 | eleq1d | |- ( z = ( `' f " w ) -> ( ( f " z ) e. x <-> ( f " ( `' f " w ) ) e. x ) ) |
| 34 | 32 | eqeq2d | |- ( z = ( `' f " w ) -> ( w = ( f " z ) <-> w = ( f " ( `' f " w ) ) ) ) |
| 35 | 33 34 | anbi12d | |- ( z = ( `' f " w ) -> ( ( ( f " z ) e. x /\ w = ( f " z ) ) <-> ( ( f " ( `' f " w ) ) e. x /\ w = ( f " ( `' f " w ) ) ) ) ) |
| 36 | 35 | rspcev | |- ( ( ( `' f " w ) e. ~P A /\ ( ( f " ( `' f " w ) ) e. x /\ w = ( f " ( `' f " w ) ) ) ) -> E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) ) |
| 37 | 21 31 29 36 | syl12anc | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) ) |
| 38 | 37 | ex | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( w e. x -> E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) ) ) |
| 39 | 13 38 | impbid2 | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( E. z e. ~P A ( ( f " z ) e. x /\ w = ( f " z ) ) <-> w e. x ) ) |
| 40 | 10 39 | bitrid | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) <-> w e. x ) ) |
| 41 | 40 | eqabcdv | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> { w | E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) } = x ) |
| 42 | 41 | unieqd | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> U. { w | E. z e. { y e. ~P A | ( f " y ) e. x } w = ( f " z ) } = U. x ) |
| 43 | 7 42 | eqtrid | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( f " U. { y e. ~P A | ( f " y ) e. x } ) = U. x ) |
| 44 | simplr | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> A e. Fin2 ) |
|
| 45 | ssrab2 | |- { y e. ~P A | ( f " y ) e. x } C_ ~P A |
|
| 46 | 45 | a1i | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> { y e. ~P A | ( f " y ) e. x } C_ ~P A ) |
| 47 | simprrl | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> x =/= (/) ) |
|
| 48 | n0 | |- ( x =/= (/) <-> E. w w e. x ) |
|
| 49 | 47 48 | sylib | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> E. w w e. x ) |
| 50 | imaeq2 | |- ( y = ( `' f " w ) -> ( f " y ) = ( f " ( `' f " w ) ) ) |
|
| 51 | 50 | eleq1d | |- ( y = ( `' f " w ) -> ( ( f " y ) e. x <-> ( f " ( `' f " w ) ) e. x ) ) |
| 52 | 51 | rspcev | |- ( ( ( `' f " w ) e. ~P A /\ ( f " ( `' f " w ) ) e. x ) -> E. y e. ~P A ( f " y ) e. x ) |
| 53 | 21 31 52 | syl2anc | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ w e. x ) -> E. y e. ~P A ( f " y ) e. x ) |
| 54 | 49 53 | exlimddv | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> E. y e. ~P A ( f " y ) e. x ) |
| 55 | rabn0 | |- ( { y e. ~P A | ( f " y ) e. x } =/= (/) <-> E. y e. ~P A ( f " y ) e. x ) |
|
| 56 | 54 55 | sylibr | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> { y e. ~P A | ( f " y ) e. x } =/= (/) ) |
| 57 | 9 | elrab | |- ( z e. { y e. ~P A | ( f " y ) e. x } <-> ( z e. ~P A /\ ( f " z ) e. x ) ) |
| 58 | imaeq2 | |- ( y = w -> ( f " y ) = ( f " w ) ) |
|
| 59 | 58 | eleq1d | |- ( y = w -> ( ( f " y ) e. x <-> ( f " w ) e. x ) ) |
| 60 | 59 | elrab | |- ( w e. { y e. ~P A | ( f " y ) e. x } <-> ( w e. ~P A /\ ( f " w ) e. x ) ) |
| 61 | 57 60 | anbi12i | |- ( ( z e. { y e. ~P A | ( f " y ) e. x } /\ w e. { y e. ~P A | ( f " y ) e. x } ) <-> ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) |
| 62 | simprrr | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> [C.] Or x ) |
|
| 63 | 62 | adantr | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> [C.] Or x ) |
| 64 | simprlr | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( f " z ) e. x ) |
|
| 65 | simprrr | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( f " w ) e. x ) |
|
| 66 | sorpssi | |- ( ( [C.] Or x /\ ( ( f " z ) e. x /\ ( f " w ) e. x ) ) -> ( ( f " z ) C_ ( f " w ) \/ ( f " w ) C_ ( f " z ) ) ) |
|
| 67 | 63 64 65 66 | syl12anc | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( ( f " z ) C_ ( f " w ) \/ ( f " w ) C_ ( f " z ) ) ) |
| 68 | f1of1 | |- ( f : A -1-1-onto-> B -> f : A -1-1-> B ) |
|
| 69 | 68 | ad3antrrr | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> f : A -1-1-> B ) |
| 70 | simprll | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> z e. ~P A ) |
|
| 71 | 70 | elpwid | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> z C_ A ) |
| 72 | simprrl | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> w e. ~P A ) |
|
| 73 | 72 | elpwid | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> w C_ A ) |
| 74 | f1imass | |- ( ( f : A -1-1-> B /\ ( z C_ A /\ w C_ A ) ) -> ( ( f " z ) C_ ( f " w ) <-> z C_ w ) ) |
|
| 75 | 69 71 73 74 | syl12anc | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( ( f " z ) C_ ( f " w ) <-> z C_ w ) ) |
| 76 | f1imass | |- ( ( f : A -1-1-> B /\ ( w C_ A /\ z C_ A ) ) -> ( ( f " w ) C_ ( f " z ) <-> w C_ z ) ) |
|
| 77 | 69 73 71 76 | syl12anc | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( ( f " w ) C_ ( f " z ) <-> w C_ z ) ) |
| 78 | 75 77 | orbi12d | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( ( ( f " z ) C_ ( f " w ) \/ ( f " w ) C_ ( f " z ) ) <-> ( z C_ w \/ w C_ z ) ) ) |
| 79 | 67 78 | mpbid | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( ( z e. ~P A /\ ( f " z ) e. x ) /\ ( w e. ~P A /\ ( f " w ) e. x ) ) ) -> ( z C_ w \/ w C_ z ) ) |
| 80 | 61 79 | sylan2b | |- ( ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) /\ ( z e. { y e. ~P A | ( f " y ) e. x } /\ w e. { y e. ~P A | ( f " y ) e. x } ) ) -> ( z C_ w \/ w C_ z ) ) |
| 81 | 80 | ralrimivva | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> A. z e. { y e. ~P A | ( f " y ) e. x } A. w e. { y e. ~P A | ( f " y ) e. x } ( z C_ w \/ w C_ z ) ) |
| 82 | sorpss | |- ( [C.] Or { y e. ~P A | ( f " y ) e. x } <-> A. z e. { y e. ~P A | ( f " y ) e. x } A. w e. { y e. ~P A | ( f " y ) e. x } ( z C_ w \/ w C_ z ) ) |
|
| 83 | 81 82 | sylibr | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> [C.] Or { y e. ~P A | ( f " y ) e. x } ) |
| 84 | fin2i | |- ( ( ( A e. Fin2 /\ { y e. ~P A | ( f " y ) e. x } C_ ~P A ) /\ ( { y e. ~P A | ( f " y ) e. x } =/= (/) /\ [C.] Or { y e. ~P A | ( f " y ) e. x } ) ) -> U. { y e. ~P A | ( f " y ) e. x } e. { y e. ~P A | ( f " y ) e. x } ) |
|
| 85 | 44 46 56 83 84 | syl22anc | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> U. { y e. ~P A | ( f " y ) e. x } e. { y e. ~P A | ( f " y ) e. x } ) |
| 86 | imaeq2 | |- ( z = U. { y e. ~P A | ( f " y ) e. x } -> ( f " z ) = ( f " U. { y e. ~P A | ( f " y ) e. x } ) ) |
|
| 87 | 86 | eleq1d | |- ( z = U. { y e. ~P A | ( f " y ) e. x } -> ( ( f " z ) e. x <-> ( f " U. { y e. ~P A | ( f " y ) e. x } ) e. x ) ) |
| 88 | 9 | cbvrabv | |- { y e. ~P A | ( f " y ) e. x } = { z e. ~P A | ( f " z ) e. x } |
| 89 | 87 88 | elrab2 | |- ( U. { y e. ~P A | ( f " y ) e. x } e. { y e. ~P A | ( f " y ) e. x } <-> ( U. { y e. ~P A | ( f " y ) e. x } e. ~P A /\ ( f " U. { y e. ~P A | ( f " y ) e. x } ) e. x ) ) |
| 90 | 89 | simprbi | |- ( U. { y e. ~P A | ( f " y ) e. x } e. { y e. ~P A | ( f " y ) e. x } -> ( f " U. { y e. ~P A | ( f " y ) e. x } ) e. x ) |
| 91 | 85 90 | syl | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> ( f " U. { y e. ~P A | ( f " y ) e. x } ) e. x ) |
| 92 | 43 91 | eqeltrrd | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ ( x C_ ~P B /\ ( x =/= (/) /\ [C.] Or x ) ) ) -> U. x e. x ) |
| 93 | 92 | expr | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ x C_ ~P B ) -> ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) |
| 94 | 2 93 | sylan2 | |- ( ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) /\ x e. ~P ~P B ) -> ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) |
| 95 | 94 | ralrimiva | |- ( ( f : A -1-1-onto-> B /\ A e. Fin2 ) -> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) |
| 96 | 95 | ex | |- ( f : A -1-1-onto-> B -> ( A e. Fin2 -> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
| 97 | 96 | exlimiv | |- ( E. f f : A -1-1-onto-> B -> ( A e. Fin2 -> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
| 98 | 1 97 | sylbi | |- ( A ~~ B -> ( A e. Fin2 -> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
| 99 | relen | |- Rel ~~ |
|
| 100 | 99 | brrelex2i | |- ( A ~~ B -> B e. _V ) |
| 101 | isfin2 | |- ( B e. _V -> ( B e. Fin2 <-> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
|
| 102 | 100 101 | syl | |- ( A ~~ B -> ( B e. Fin2 <-> A. x e. ~P ~P B ( ( x =/= (/) /\ [C.] Or x ) -> U. x e. x ) ) ) |
| 103 | 98 102 | sylibrd | |- ( A ~~ B -> ( A e. Fin2 -> B e. Fin2 ) ) |