This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin2i | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ∪ 𝐵 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) | |
| 2 | soeq2 | ⊢ ( 𝑦 = 𝐵 → ( [⊊] Or 𝑦 ↔ [⊊] Or 𝐵 ) ) | |
| 3 | 1 2 | anbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) ↔ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) ) |
| 4 | unieq | ⊢ ( 𝑦 = 𝐵 → ∪ 𝑦 = ∪ 𝐵 ) | |
| 5 | id | ⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) | |
| 6 | 4 5 | eleq12d | ⊢ ( 𝑦 = 𝐵 → ( ∪ 𝑦 ∈ 𝑦 ↔ ∪ 𝐵 ∈ 𝐵 ) ) |
| 7 | 3 6 | imbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) ↔ ( ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) → ∪ 𝐵 ∈ 𝐵 ) ) ) |
| 8 | isfin2 | ⊢ ( 𝐴 ∈ FinII → ( 𝐴 ∈ FinII ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) ) ) | |
| 9 | 8 | ibi | ⊢ ( 𝐴 ∈ FinII → ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) ) |
| 11 | pwexg | ⊢ ( 𝐴 ∈ FinII → 𝒫 𝐴 ∈ V ) | |
| 12 | elpw2g | ⊢ ( 𝒫 𝐴 ∈ V → ( 𝐵 ∈ 𝒫 𝒫 𝐴 ↔ 𝐵 ⊆ 𝒫 𝐴 ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝐴 ∈ FinII → ( 𝐵 ∈ 𝒫 𝒫 𝐴 ↔ 𝐵 ⊆ 𝒫 𝐴 ) ) |
| 14 | 13 | biimpar | ⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) → 𝐵 ∈ 𝒫 𝒫 𝐴 ) |
| 15 | 7 10 14 | rspcdva | ⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) → ∪ 𝐵 ∈ 𝐵 ) ) |
| 16 | 15 | imp | ⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ∪ 𝐵 ∈ 𝐵 ) |