This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . In a class of ordinals, each element is fully identified by those of its predecessors which also belong to the class. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin23lem24 | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐶 ∩ 𝐵 ) = ( 𝐷 ∩ 𝐵 ) ↔ 𝐶 = 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → Ord 𝐴 ) | |
| 2 | simplr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐵 ⊆ 𝐴 ) | |
| 3 | simprl | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐶 ∈ 𝐵 ) | |
| 4 | 2 3 | sseldd | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐶 ∈ 𝐴 ) |
| 5 | ordelord | ⊢ ( ( Ord 𝐴 ∧ 𝐶 ∈ 𝐴 ) → Ord 𝐶 ) | |
| 6 | 1 4 5 | syl2anc | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → Ord 𝐶 ) |
| 7 | simprr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐷 ∈ 𝐵 ) | |
| 8 | 2 7 | sseldd | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → 𝐷 ∈ 𝐴 ) |
| 9 | ordelord | ⊢ ( ( Ord 𝐴 ∧ 𝐷 ∈ 𝐴 ) → Ord 𝐷 ) | |
| 10 | 1 8 9 | syl2anc | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → Ord 𝐷 ) |
| 11 | ordtri3 | ⊢ ( ( Ord 𝐶 ∧ Ord 𝐷 ) → ( 𝐶 = 𝐷 ↔ ¬ ( 𝐶 ∈ 𝐷 ∨ 𝐷 ∈ 𝐶 ) ) ) | |
| 12 | 11 | necon2abid | ⊢ ( ( Ord 𝐶 ∧ Ord 𝐷 ) → ( ( 𝐶 ∈ 𝐷 ∨ 𝐷 ∈ 𝐶 ) ↔ 𝐶 ≠ 𝐷 ) ) |
| 13 | 6 10 12 | syl2anc | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐶 ∈ 𝐷 ∨ 𝐷 ∈ 𝐶 ) ↔ 𝐶 ≠ 𝐷 ) ) |
| 14 | simpr | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ 𝐷 ) | |
| 15 | simplrl | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ 𝐵 ) | |
| 16 | 14 15 | elind | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ ( 𝐷 ∩ 𝐵 ) ) |
| 17 | 6 | adantr | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → Ord 𝐶 ) |
| 18 | ordirr | ⊢ ( Ord 𝐶 → ¬ 𝐶 ∈ 𝐶 ) | |
| 19 | 17 18 | syl | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → ¬ 𝐶 ∈ 𝐶 ) |
| 20 | elinel1 | ⊢ ( 𝐶 ∈ ( 𝐶 ∩ 𝐵 ) → 𝐶 ∈ 𝐶 ) | |
| 21 | 19 20 | nsyl | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → ¬ 𝐶 ∈ ( 𝐶 ∩ 𝐵 ) ) |
| 22 | nelne1 | ⊢ ( ( 𝐶 ∈ ( 𝐷 ∩ 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐶 ∩ 𝐵 ) ) → ( 𝐷 ∩ 𝐵 ) ≠ ( 𝐶 ∩ 𝐵 ) ) | |
| 23 | 16 21 22 | syl2anc | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → ( 𝐷 ∩ 𝐵 ) ≠ ( 𝐶 ∩ 𝐵 ) ) |
| 24 | 23 | necomd | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐶 ∈ 𝐷 ) → ( 𝐶 ∩ 𝐵 ) ≠ ( 𝐷 ∩ 𝐵 ) ) |
| 25 | simpr | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐷 ∈ 𝐶 ) → 𝐷 ∈ 𝐶 ) | |
| 26 | simplrr | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐷 ∈ 𝐶 ) → 𝐷 ∈ 𝐵 ) | |
| 27 | 25 26 | elind | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐷 ∈ 𝐶 ) → 𝐷 ∈ ( 𝐶 ∩ 𝐵 ) ) |
| 28 | 10 | adantr | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐷 ∈ 𝐶 ) → Ord 𝐷 ) |
| 29 | ordirr | ⊢ ( Ord 𝐷 → ¬ 𝐷 ∈ 𝐷 ) | |
| 30 | 28 29 | syl | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐷 ∈ 𝐶 ) → ¬ 𝐷 ∈ 𝐷 ) |
| 31 | elinel1 | ⊢ ( 𝐷 ∈ ( 𝐷 ∩ 𝐵 ) → 𝐷 ∈ 𝐷 ) | |
| 32 | 30 31 | nsyl | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐷 ∈ 𝐶 ) → ¬ 𝐷 ∈ ( 𝐷 ∩ 𝐵 ) ) |
| 33 | nelne1 | ⊢ ( ( 𝐷 ∈ ( 𝐶 ∩ 𝐵 ) ∧ ¬ 𝐷 ∈ ( 𝐷 ∩ 𝐵 ) ) → ( 𝐶 ∩ 𝐵 ) ≠ ( 𝐷 ∩ 𝐵 ) ) | |
| 34 | 27 32 33 | syl2anc | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ 𝐷 ∈ 𝐶 ) → ( 𝐶 ∩ 𝐵 ) ≠ ( 𝐷 ∩ 𝐵 ) ) |
| 35 | 24 34 | jaodan | ⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) ∧ ( 𝐶 ∈ 𝐷 ∨ 𝐷 ∈ 𝐶 ) ) → ( 𝐶 ∩ 𝐵 ) ≠ ( 𝐷 ∩ 𝐵 ) ) |
| 36 | 35 | ex | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐶 ∈ 𝐷 ∨ 𝐷 ∈ 𝐶 ) → ( 𝐶 ∩ 𝐵 ) ≠ ( 𝐷 ∩ 𝐵 ) ) ) |
| 37 | 13 36 | sylbird | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( 𝐶 ≠ 𝐷 → ( 𝐶 ∩ 𝐵 ) ≠ ( 𝐷 ∩ 𝐵 ) ) ) |
| 38 | 37 | necon4d | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐶 ∩ 𝐵 ) = ( 𝐷 ∩ 𝐵 ) → 𝐶 = 𝐷 ) ) |
| 39 | ineq1 | ⊢ ( 𝐶 = 𝐷 → ( 𝐶 ∩ 𝐵 ) = ( 𝐷 ∩ 𝐵 ) ) | |
| 40 | 38 39 | impbid1 | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐶 ∩ 𝐵 ) = ( 𝐷 ∩ 𝐵 ) ↔ 𝐶 = 𝐷 ) ) |