This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function maps the set S , of complex numbers with imaginary part in a real interval of length 2 x. _pi , one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008) (Proof shortened by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eff1olem.1 | ⊢ 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) | |
| eff1olem.2 | ⊢ 𝑆 = ( ◡ ℑ “ 𝐷 ) | ||
| eff1olem.3 | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | ||
| eff1olem.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) | ||
| eff1olem.5 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) | ||
| Assertion | eff1olem | ⊢ ( 𝜑 → ( exp ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( ℂ ∖ { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eff1olem.1 | ⊢ 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) | |
| 2 | eff1olem.2 | ⊢ 𝑆 = ( ◡ ℑ “ 𝐷 ) | |
| 3 | eff1olem.3 | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | |
| 4 | eff1olem.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) | |
| 5 | eff1olem.5 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) | |
| 6 | cnvimass | ⊢ ( ◡ ℑ “ 𝐷 ) ⊆ dom ℑ | |
| 7 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 8 | 7 | fdmi | ⊢ dom ℑ = ℂ |
| 9 | 8 | eqcomi | ⊢ ℂ = dom ℑ |
| 10 | 6 2 9 | 3sstr4i | ⊢ 𝑆 ⊆ ℂ |
| 11 | eff2 | ⊢ exp : ℂ ⟶ ( ℂ ∖ { 0 } ) | |
| 12 | 11 | a1i | ⊢ ( 𝑆 ⊆ ℂ → exp : ℂ ⟶ ( ℂ ∖ { 0 } ) ) |
| 13 | 12 | feqmptd | ⊢ ( 𝑆 ⊆ ℂ → exp = ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) |
| 14 | 13 | reseq1d | ⊢ ( 𝑆 ⊆ ℂ → ( exp ↾ 𝑆 ) = ( ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ↾ 𝑆 ) ) |
| 15 | resmpt | ⊢ ( 𝑆 ⊆ ℂ → ( ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ↾ 𝑆 ) = ( 𝑦 ∈ 𝑆 ↦ ( exp ‘ 𝑦 ) ) ) | |
| 16 | 14 15 | eqtrd | ⊢ ( 𝑆 ⊆ ℂ → ( exp ↾ 𝑆 ) = ( 𝑦 ∈ 𝑆 ↦ ( exp ‘ 𝑦 ) ) ) |
| 17 | 10 16 | ax-mp | ⊢ ( exp ↾ 𝑆 ) = ( 𝑦 ∈ 𝑆 ↦ ( exp ‘ 𝑦 ) ) |
| 18 | 10 | sseli | ⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℂ ) |
| 19 | 11 | ffvelcdmi | ⊢ ( 𝑦 ∈ ℂ → ( exp ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 20 | 18 19 | syl | ⊢ ( 𝑦 ∈ 𝑆 → ( exp ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 22 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 ∈ ( ℂ ∖ { 0 } ) ) | |
| 23 | eldifsn | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) | |
| 24 | 22 23 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 25 | 24 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 ∈ ℂ ) |
| 26 | 24 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
| 27 | 25 26 | absrpcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ 𝑥 ) ∈ ℝ+ ) |
| 28 | reeff1o | ⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ | |
| 29 | f1ocnv | ⊢ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ → ◡ ( exp ↾ ℝ ) : ℝ+ –1-1-onto→ ℝ ) | |
| 30 | f1of | ⊢ ( ◡ ( exp ↾ ℝ ) : ℝ+ –1-1-onto→ ℝ → ◡ ( exp ↾ ℝ ) : ℝ+ ⟶ ℝ ) | |
| 31 | 28 29 30 | mp2b | ⊢ ◡ ( exp ↾ ℝ ) : ℝ+ ⟶ ℝ |
| 32 | 31 | ffvelcdmi | ⊢ ( ( abs ‘ 𝑥 ) ∈ ℝ+ → ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ∈ ℝ ) |
| 33 | 27 32 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ∈ ℝ ) |
| 34 | 33 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ∈ ℂ ) |
| 35 | ax-icn | ⊢ i ∈ ℂ | |
| 36 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → 𝐷 ⊆ ℝ ) |
| 37 | eqid | ⊢ ( ◡ abs “ { 1 } ) = ( ◡ abs “ { 1 } ) | |
| 38 | eqid | ⊢ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) | |
| 39 | 1 37 3 4 5 38 | efif1olem4 | ⊢ ( 𝜑 → 𝐹 : 𝐷 –1-1-onto→ ( ◡ abs “ { 1 } ) ) |
| 40 | f1ocnv | ⊢ ( 𝐹 : 𝐷 –1-1-onto→ ( ◡ abs “ { 1 } ) → ◡ 𝐹 : ( ◡ abs “ { 1 } ) –1-1-onto→ 𝐷 ) | |
| 41 | f1of | ⊢ ( ◡ 𝐹 : ( ◡ abs “ { 1 } ) –1-1-onto→ 𝐷 → ◡ 𝐹 : ( ◡ abs “ { 1 } ) ⟶ 𝐷 ) | |
| 42 | 39 40 41 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : ( ◡ abs “ { 1 } ) ⟶ 𝐷 ) |
| 43 | 42 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ◡ 𝐹 : ( ◡ abs “ { 1 } ) ⟶ 𝐷 ) |
| 44 | 25 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
| 45 | 44 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ 𝑥 ) ∈ ℂ ) |
| 46 | 25 26 | absne0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ 𝑥 ) ≠ 0 ) |
| 47 | 25 45 46 | divcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 / ( abs ‘ 𝑥 ) ) ∈ ℂ ) |
| 48 | 25 45 46 | absdivd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) = ( ( abs ‘ 𝑥 ) / ( abs ‘ ( abs ‘ 𝑥 ) ) ) ) |
| 49 | absidm | ⊢ ( 𝑥 ∈ ℂ → ( abs ‘ ( abs ‘ 𝑥 ) ) = ( abs ‘ 𝑥 ) ) | |
| 50 | 25 49 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ ( abs ‘ 𝑥 ) ) = ( abs ‘ 𝑥 ) ) |
| 51 | 50 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( abs ‘ 𝑥 ) / ( abs ‘ ( abs ‘ 𝑥 ) ) ) = ( ( abs ‘ 𝑥 ) / ( abs ‘ 𝑥 ) ) ) |
| 52 | 45 46 | dividd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( abs ‘ 𝑥 ) / ( abs ‘ 𝑥 ) ) = 1 ) |
| 53 | 48 51 52 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) = 1 ) |
| 54 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 55 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
| 56 | fniniseg | ⊢ ( abs Fn ℂ → ( ( 𝑥 / ( abs ‘ 𝑥 ) ) ∈ ( ◡ abs “ { 1 } ) ↔ ( ( 𝑥 / ( abs ‘ 𝑥 ) ) ∈ ℂ ∧ ( abs ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) = 1 ) ) ) | |
| 57 | 54 55 56 | mp2b | ⊢ ( ( 𝑥 / ( abs ‘ 𝑥 ) ) ∈ ( ◡ abs “ { 1 } ) ↔ ( ( 𝑥 / ( abs ‘ 𝑥 ) ) ∈ ℂ ∧ ( abs ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) = 1 ) ) |
| 58 | 47 53 57 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 / ( abs ‘ 𝑥 ) ) ∈ ( ◡ abs “ { 1 } ) ) |
| 59 | 43 58 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ∈ 𝐷 ) |
| 60 | 36 59 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 61 | 60 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 62 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ∈ ℂ ) → ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ∈ ℂ ) | |
| 63 | 35 61 62 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 64 | 34 63 | addcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ ℂ ) |
| 65 | 33 60 | crimd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ℑ ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) = ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) |
| 66 | 65 59 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ℑ ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ∈ 𝐷 ) |
| 67 | ffn | ⊢ ( ℑ : ℂ ⟶ ℝ → ℑ Fn ℂ ) | |
| 68 | elpreima | ⊢ ( ℑ Fn ℂ → ( ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ ( ◡ ℑ “ 𝐷 ) ↔ ( ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ ℂ ∧ ( ℑ ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ∈ 𝐷 ) ) ) | |
| 69 | 7 67 68 | mp2b | ⊢ ( ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ ( ◡ ℑ “ 𝐷 ) ↔ ( ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ ℂ ∧ ( ℑ ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ∈ 𝐷 ) ) |
| 70 | 64 66 69 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ ( ◡ ℑ “ 𝐷 ) ) |
| 71 | 70 2 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ 𝑆 ) |
| 72 | efadd | ⊢ ( ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ∈ ℂ ∧ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ∈ ℂ ) → ( exp ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) = ( ( exp ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) · ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) | |
| 73 | 34 63 72 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( exp ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) = ( ( exp ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) · ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) |
| 74 | 33 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( exp ↾ ℝ ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) = ( exp ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) ) |
| 75 | f1ocnvfv2 | ⊢ ( ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ∧ ( abs ‘ 𝑥 ) ∈ ℝ+ ) → ( ( exp ↾ ℝ ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) = ( abs ‘ 𝑥 ) ) | |
| 76 | 28 27 75 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( exp ↾ ℝ ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) = ( abs ‘ 𝑥 ) ) |
| 77 | 74 76 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( exp ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) = ( abs ‘ 𝑥 ) ) |
| 78 | oveq2 | ⊢ ( 𝑧 = ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) → ( i · 𝑧 ) = ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) | |
| 79 | 78 | fveq2d | ⊢ ( 𝑧 = ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) → ( exp ‘ ( i · 𝑧 ) ) = ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) |
| 80 | oveq2 | ⊢ ( 𝑤 = 𝑧 → ( i · 𝑤 ) = ( i · 𝑧 ) ) | |
| 81 | 80 | fveq2d | ⊢ ( 𝑤 = 𝑧 → ( exp ‘ ( i · 𝑤 ) ) = ( exp ‘ ( i · 𝑧 ) ) ) |
| 82 | 81 | cbvmptv | ⊢ ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) = ( 𝑧 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑧 ) ) ) |
| 83 | 1 82 | eqtri | ⊢ 𝐹 = ( 𝑧 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑧 ) ) ) |
| 84 | fvex | ⊢ ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ V | |
| 85 | 79 83 84 | fvmpt | ⊢ ( ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ∈ 𝐷 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) = ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) |
| 86 | 59 85 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) = ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) |
| 87 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → 𝐹 : 𝐷 –1-1-onto→ ( ◡ abs “ { 1 } ) ) |
| 88 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝐷 –1-1-onto→ ( ◡ abs “ { 1 } ) ∧ ( 𝑥 / ( abs ‘ 𝑥 ) ) ∈ ( ◡ abs “ { 1 } ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) = ( 𝑥 / ( abs ‘ 𝑥 ) ) ) | |
| 89 | 87 58 88 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) = ( 𝑥 / ( abs ‘ 𝑥 ) ) ) |
| 90 | 86 89 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) = ( 𝑥 / ( abs ‘ 𝑥 ) ) ) |
| 91 | 77 90 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( exp ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) · ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) = ( ( abs ‘ 𝑥 ) · ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) |
| 92 | 25 45 46 | divcan2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( abs ‘ 𝑥 ) · ( 𝑥 / ( abs ‘ 𝑥 ) ) ) = 𝑥 ) |
| 93 | 73 91 92 | 3eqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 = ( exp ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) |
| 94 | 93 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) ) → 𝑥 = ( exp ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) |
| 95 | fveq2 | ⊢ ( 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) → ( exp ‘ 𝑦 ) = ( exp ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) | |
| 96 | 95 | eqeq2d | ⊢ ( 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) → ( 𝑥 = ( exp ‘ 𝑦 ) ↔ 𝑥 = ( exp ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) ) |
| 97 | 94 96 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) ) → ( 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) → 𝑥 = ( exp ‘ 𝑦 ) ) ) |
| 98 | 18 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ℂ ) |
| 99 | 98 | replimd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 = ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 100 | absef | ⊢ ( 𝑦 ∈ ℂ → ( abs ‘ ( exp ‘ 𝑦 ) ) = ( exp ‘ ( ℜ ‘ 𝑦 ) ) ) | |
| 101 | 98 100 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( exp ‘ 𝑦 ) ) = ( exp ‘ ( ℜ ‘ 𝑦 ) ) ) |
| 102 | 98 | recld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ℜ ‘ 𝑦 ) ∈ ℝ ) |
| 103 | 102 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( exp ↾ ℝ ) ‘ ( ℜ ‘ 𝑦 ) ) = ( exp ‘ ( ℜ ‘ 𝑦 ) ) ) |
| 104 | 101 103 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( exp ‘ 𝑦 ) ) = ( ( exp ↾ ℝ ) ‘ ( ℜ ‘ 𝑦 ) ) ) |
| 105 | 104 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ ( exp ‘ 𝑦 ) ) ) = ( ◡ ( exp ↾ ℝ ) ‘ ( ( exp ↾ ℝ ) ‘ ( ℜ ‘ 𝑦 ) ) ) ) |
| 106 | f1ocnvfv1 | ⊢ ( ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ∧ ( ℜ ‘ 𝑦 ) ∈ ℝ ) → ( ◡ ( exp ↾ ℝ ) ‘ ( ( exp ↾ ℝ ) ‘ ( ℜ ‘ 𝑦 ) ) ) = ( ℜ ‘ 𝑦 ) ) | |
| 107 | 28 102 106 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ◡ ( exp ↾ ℝ ) ‘ ( ( exp ↾ ℝ ) ‘ ( ℜ ‘ 𝑦 ) ) ) = ( ℜ ‘ 𝑦 ) ) |
| 108 | 105 107 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ ( exp ‘ 𝑦 ) ) ) = ( ℜ ‘ 𝑦 ) ) |
| 109 | 98 | imcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ℑ ‘ 𝑦 ) ∈ ℝ ) |
| 110 | 109 | recnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ℑ ‘ 𝑦 ) ∈ ℂ ) |
| 111 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝑦 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝑦 ) ) ∈ ℂ ) | |
| 112 | 35 110 111 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( i · ( ℑ ‘ 𝑦 ) ) ∈ ℂ ) |
| 113 | efcl | ⊢ ( ( i · ( ℑ ‘ 𝑦 ) ) ∈ ℂ → ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ∈ ℂ ) | |
| 114 | 112 113 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ∈ ℂ ) |
| 115 | 102 | recnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ℜ ‘ 𝑦 ) ∈ ℂ ) |
| 116 | efcl | ⊢ ( ( ℜ ‘ 𝑦 ) ∈ ℂ → ( exp ‘ ( ℜ ‘ 𝑦 ) ) ∈ ℂ ) | |
| 117 | 115 116 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ ( ℜ ‘ 𝑦 ) ) ∈ ℂ ) |
| 118 | efne0 | ⊢ ( ( ℜ ‘ 𝑦 ) ∈ ℂ → ( exp ‘ ( ℜ ‘ 𝑦 ) ) ≠ 0 ) | |
| 119 | 115 118 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ ( ℜ ‘ 𝑦 ) ) ≠ 0 ) |
| 120 | 114 117 119 | divcan3d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( exp ‘ ( ℜ ‘ 𝑦 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) / ( exp ‘ ( ℜ ‘ 𝑦 ) ) ) = ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 121 | 99 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ 𝑦 ) = ( exp ‘ ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) ) |
| 122 | efadd | ⊢ ( ( ( ℜ ‘ 𝑦 ) ∈ ℂ ∧ ( i · ( ℑ ‘ 𝑦 ) ) ∈ ℂ ) → ( exp ‘ ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝑦 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) ) | |
| 123 | 115 112 122 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝑦 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) ) |
| 124 | 121 123 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ 𝑦 ) = ( ( exp ‘ ( ℜ ‘ 𝑦 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) ) |
| 125 | 124 101 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) = ( ( ( exp ‘ ( ℜ ‘ 𝑦 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) / ( exp ‘ ( ℜ ‘ 𝑦 ) ) ) ) |
| 126 | elpreima | ⊢ ( ℑ Fn ℂ → ( 𝑦 ∈ ( ◡ ℑ “ 𝐷 ) ↔ ( 𝑦 ∈ ℂ ∧ ( ℑ ‘ 𝑦 ) ∈ 𝐷 ) ) ) | |
| 127 | 7 67 126 | mp2b | ⊢ ( 𝑦 ∈ ( ◡ ℑ “ 𝐷 ) ↔ ( 𝑦 ∈ ℂ ∧ ( ℑ ‘ 𝑦 ) ∈ 𝐷 ) ) |
| 128 | 127 | simprbi | ⊢ ( 𝑦 ∈ ( ◡ ℑ “ 𝐷 ) → ( ℑ ‘ 𝑦 ) ∈ 𝐷 ) |
| 129 | 128 2 | eleq2s | ⊢ ( 𝑦 ∈ 𝑆 → ( ℑ ‘ 𝑦 ) ∈ 𝐷 ) |
| 130 | 129 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ℑ ‘ 𝑦 ) ∈ 𝐷 ) |
| 131 | oveq2 | ⊢ ( 𝑤 = ( ℑ ‘ 𝑦 ) → ( i · 𝑤 ) = ( i · ( ℑ ‘ 𝑦 ) ) ) | |
| 132 | 131 | fveq2d | ⊢ ( 𝑤 = ( ℑ ‘ 𝑦 ) → ( exp ‘ ( i · 𝑤 ) ) = ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 133 | fvex | ⊢ ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ∈ V | |
| 134 | 132 1 133 | fvmpt | ⊢ ( ( ℑ ‘ 𝑦 ) ∈ 𝐷 → ( 𝐹 ‘ ( ℑ ‘ 𝑦 ) ) = ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 135 | 130 134 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ ( ℑ ‘ 𝑦 ) ) = ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 136 | 120 125 135 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) = ( 𝐹 ‘ ( ℑ ‘ 𝑦 ) ) ) |
| 137 | 136 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) = ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( ℑ ‘ 𝑦 ) ) ) ) |
| 138 | f1ocnvfv1 | ⊢ ( ( 𝐹 : 𝐷 –1-1-onto→ ( ◡ abs “ { 1 } ) ∧ ( ℑ ‘ 𝑦 ) ∈ 𝐷 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( ℑ ‘ 𝑦 ) ) ) = ( ℑ ‘ 𝑦 ) ) | |
| 139 | 39 129 138 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( ℑ ‘ 𝑦 ) ) ) = ( ℑ ‘ 𝑦 ) ) |
| 140 | 137 139 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) = ( ℑ ‘ 𝑦 ) ) |
| 141 | 140 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( i · ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) ) = ( i · ( ℑ ‘ 𝑦 ) ) ) |
| 142 | 108 141 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ ( exp ‘ 𝑦 ) ) ) + ( i · ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) ) ) = ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 143 | 99 142 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ ( exp ‘ 𝑦 ) ) ) + ( i · ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) ) ) ) |
| 144 | fveq2 | ⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( exp ‘ 𝑦 ) ) ) | |
| 145 | 144 | fveq2d | ⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) = ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) |
| 146 | id | ⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → 𝑥 = ( exp ‘ 𝑦 ) ) | |
| 147 | 146 144 | oveq12d | ⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → ( 𝑥 / ( abs ‘ 𝑥 ) ) = ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) |
| 148 | 147 | fveq2d | ⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) = ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) ) |
| 149 | 148 | oveq2d | ⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) = ( i · ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) ) ) |
| 150 | 145 149 | oveq12d | ⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ ( exp ‘ 𝑦 ) ) ) + ( i · ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) ) ) ) |
| 151 | 150 | eqeq2d | ⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → ( 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ↔ 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ ( exp ‘ 𝑦 ) ) ) + ( i · ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) ) ) ) ) |
| 152 | 143 151 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 = ( exp ‘ 𝑦 ) → 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) |
| 153 | 152 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) ) → ( 𝑥 = ( exp ‘ 𝑦 ) → 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) |
| 154 | 97 153 | impbid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) ) → ( 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ↔ 𝑥 = ( exp ‘ 𝑦 ) ) ) |
| 155 | 17 21 71 154 | f1o2d | ⊢ ( 𝜑 → ( exp ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( ℂ ∖ { 0 } ) ) |