This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function maps the set S , of complex numbers with imaginary part in a real interval of length 2 x. _pi , one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008) (Proof shortened by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eff1olem.1 | |- F = ( w e. D |-> ( exp ` ( _i x. w ) ) ) |
|
| eff1olem.2 | |- S = ( `' Im " D ) |
||
| eff1olem.3 | |- ( ph -> D C_ RR ) |
||
| eff1olem.4 | |- ( ( ph /\ ( x e. D /\ y e. D ) ) -> ( abs ` ( x - y ) ) < ( 2 x. _pi ) ) |
||
| eff1olem.5 | |- ( ( ph /\ z e. RR ) -> E. y e. D ( ( z - y ) / ( 2 x. _pi ) ) e. ZZ ) |
||
| Assertion | eff1olem | |- ( ph -> ( exp |` S ) : S -1-1-onto-> ( CC \ { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eff1olem.1 | |- F = ( w e. D |-> ( exp ` ( _i x. w ) ) ) |
|
| 2 | eff1olem.2 | |- S = ( `' Im " D ) |
|
| 3 | eff1olem.3 | |- ( ph -> D C_ RR ) |
|
| 4 | eff1olem.4 | |- ( ( ph /\ ( x e. D /\ y e. D ) ) -> ( abs ` ( x - y ) ) < ( 2 x. _pi ) ) |
|
| 5 | eff1olem.5 | |- ( ( ph /\ z e. RR ) -> E. y e. D ( ( z - y ) / ( 2 x. _pi ) ) e. ZZ ) |
|
| 6 | cnvimass | |- ( `' Im " D ) C_ dom Im |
|
| 7 | imf | |- Im : CC --> RR |
|
| 8 | 7 | fdmi | |- dom Im = CC |
| 9 | 8 | eqcomi | |- CC = dom Im |
| 10 | 6 2 9 | 3sstr4i | |- S C_ CC |
| 11 | eff2 | |- exp : CC --> ( CC \ { 0 } ) |
|
| 12 | 11 | a1i | |- ( S C_ CC -> exp : CC --> ( CC \ { 0 } ) ) |
| 13 | 12 | feqmptd | |- ( S C_ CC -> exp = ( y e. CC |-> ( exp ` y ) ) ) |
| 14 | 13 | reseq1d | |- ( S C_ CC -> ( exp |` S ) = ( ( y e. CC |-> ( exp ` y ) ) |` S ) ) |
| 15 | resmpt | |- ( S C_ CC -> ( ( y e. CC |-> ( exp ` y ) ) |` S ) = ( y e. S |-> ( exp ` y ) ) ) |
|
| 16 | 14 15 | eqtrd | |- ( S C_ CC -> ( exp |` S ) = ( y e. S |-> ( exp ` y ) ) ) |
| 17 | 10 16 | ax-mp | |- ( exp |` S ) = ( y e. S |-> ( exp ` y ) ) |
| 18 | 10 | sseli | |- ( y e. S -> y e. CC ) |
| 19 | 11 | ffvelcdmi | |- ( y e. CC -> ( exp ` y ) e. ( CC \ { 0 } ) ) |
| 20 | 18 19 | syl | |- ( y e. S -> ( exp ` y ) e. ( CC \ { 0 } ) ) |
| 21 | 20 | adantl | |- ( ( ph /\ y e. S ) -> ( exp ` y ) e. ( CC \ { 0 } ) ) |
| 22 | simpr | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> x e. ( CC \ { 0 } ) ) |
|
| 23 | eldifsn | |- ( x e. ( CC \ { 0 } ) <-> ( x e. CC /\ x =/= 0 ) ) |
|
| 24 | 22 23 | sylib | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( x e. CC /\ x =/= 0 ) ) |
| 25 | 24 | simpld | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> x e. CC ) |
| 26 | 24 | simprd | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> x =/= 0 ) |
| 27 | 25 26 | absrpcld | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( abs ` x ) e. RR+ ) |
| 28 | reeff1o | |- ( exp |` RR ) : RR -1-1-onto-> RR+ |
|
| 29 | f1ocnv | |- ( ( exp |` RR ) : RR -1-1-onto-> RR+ -> `' ( exp |` RR ) : RR+ -1-1-onto-> RR ) |
|
| 30 | f1of | |- ( `' ( exp |` RR ) : RR+ -1-1-onto-> RR -> `' ( exp |` RR ) : RR+ --> RR ) |
|
| 31 | 28 29 30 | mp2b | |- `' ( exp |` RR ) : RR+ --> RR |
| 32 | 31 | ffvelcdmi | |- ( ( abs ` x ) e. RR+ -> ( `' ( exp |` RR ) ` ( abs ` x ) ) e. RR ) |
| 33 | 27 32 | syl | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( `' ( exp |` RR ) ` ( abs ` x ) ) e. RR ) |
| 34 | 33 | recnd | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( `' ( exp |` RR ) ` ( abs ` x ) ) e. CC ) |
| 35 | ax-icn | |- _i e. CC |
|
| 36 | 3 | adantr | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> D C_ RR ) |
| 37 | eqid | |- ( `' abs " { 1 } ) = ( `' abs " { 1 } ) |
|
| 38 | eqid | |- ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) = ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
|
| 39 | 1 37 3 4 5 38 | efif1olem4 | |- ( ph -> F : D -1-1-onto-> ( `' abs " { 1 } ) ) |
| 40 | f1ocnv | |- ( F : D -1-1-onto-> ( `' abs " { 1 } ) -> `' F : ( `' abs " { 1 } ) -1-1-onto-> D ) |
|
| 41 | f1of | |- ( `' F : ( `' abs " { 1 } ) -1-1-onto-> D -> `' F : ( `' abs " { 1 } ) --> D ) |
|
| 42 | 39 40 41 | 3syl | |- ( ph -> `' F : ( `' abs " { 1 } ) --> D ) |
| 43 | 42 | adantr | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> `' F : ( `' abs " { 1 } ) --> D ) |
| 44 | 25 | abscld | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( abs ` x ) e. RR ) |
| 45 | 44 | recnd | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( abs ` x ) e. CC ) |
| 46 | 25 26 | absne0d | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( abs ` x ) =/= 0 ) |
| 47 | 25 45 46 | divcld | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( x / ( abs ` x ) ) e. CC ) |
| 48 | 25 45 46 | absdivd | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( abs ` ( x / ( abs ` x ) ) ) = ( ( abs ` x ) / ( abs ` ( abs ` x ) ) ) ) |
| 49 | absidm | |- ( x e. CC -> ( abs ` ( abs ` x ) ) = ( abs ` x ) ) |
|
| 50 | 25 49 | syl | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( abs ` ( abs ` x ) ) = ( abs ` x ) ) |
| 51 | 50 | oveq2d | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( ( abs ` x ) / ( abs ` ( abs ` x ) ) ) = ( ( abs ` x ) / ( abs ` x ) ) ) |
| 52 | 45 46 | dividd | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( ( abs ` x ) / ( abs ` x ) ) = 1 ) |
| 53 | 48 51 52 | 3eqtrd | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( abs ` ( x / ( abs ` x ) ) ) = 1 ) |
| 54 | absf | |- abs : CC --> RR |
|
| 55 | ffn | |- ( abs : CC --> RR -> abs Fn CC ) |
|
| 56 | fniniseg | |- ( abs Fn CC -> ( ( x / ( abs ` x ) ) e. ( `' abs " { 1 } ) <-> ( ( x / ( abs ` x ) ) e. CC /\ ( abs ` ( x / ( abs ` x ) ) ) = 1 ) ) ) |
|
| 57 | 54 55 56 | mp2b | |- ( ( x / ( abs ` x ) ) e. ( `' abs " { 1 } ) <-> ( ( x / ( abs ` x ) ) e. CC /\ ( abs ` ( x / ( abs ` x ) ) ) = 1 ) ) |
| 58 | 47 53 57 | sylanbrc | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( x / ( abs ` x ) ) e. ( `' abs " { 1 } ) ) |
| 59 | 43 58 | ffvelcdmd | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( `' F ` ( x / ( abs ` x ) ) ) e. D ) |
| 60 | 36 59 | sseldd | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( `' F ` ( x / ( abs ` x ) ) ) e. RR ) |
| 61 | 60 | recnd | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( `' F ` ( x / ( abs ` x ) ) ) e. CC ) |
| 62 | mulcl | |- ( ( _i e. CC /\ ( `' F ` ( x / ( abs ` x ) ) ) e. CC ) -> ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) e. CC ) |
|
| 63 | 35 61 62 | sylancr | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) e. CC ) |
| 64 | 34 63 | addcld | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) e. CC ) |
| 65 | 33 60 | crimd | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( Im ` ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) = ( `' F ` ( x / ( abs ` x ) ) ) ) |
| 66 | 65 59 | eqeltrd | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( Im ` ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) e. D ) |
| 67 | ffn | |- ( Im : CC --> RR -> Im Fn CC ) |
|
| 68 | elpreima | |- ( Im Fn CC -> ( ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) e. ( `' Im " D ) <-> ( ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) e. CC /\ ( Im ` ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) e. D ) ) ) |
|
| 69 | 7 67 68 | mp2b | |- ( ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) e. ( `' Im " D ) <-> ( ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) e. CC /\ ( Im ` ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) e. D ) ) |
| 70 | 64 66 69 | sylanbrc | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) e. ( `' Im " D ) ) |
| 71 | 70 2 | eleqtrrdi | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) e. S ) |
| 72 | efadd | |- ( ( ( `' ( exp |` RR ) ` ( abs ` x ) ) e. CC /\ ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) e. CC ) -> ( exp ` ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) = ( ( exp ` ( `' ( exp |` RR ) ` ( abs ` x ) ) ) x. ( exp ` ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) ) |
|
| 73 | 34 63 72 | syl2anc | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( exp ` ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) = ( ( exp ` ( `' ( exp |` RR ) ` ( abs ` x ) ) ) x. ( exp ` ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) ) |
| 74 | 33 | fvresd | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( ( exp |` RR ) ` ( `' ( exp |` RR ) ` ( abs ` x ) ) ) = ( exp ` ( `' ( exp |` RR ) ` ( abs ` x ) ) ) ) |
| 75 | f1ocnvfv2 | |- ( ( ( exp |` RR ) : RR -1-1-onto-> RR+ /\ ( abs ` x ) e. RR+ ) -> ( ( exp |` RR ) ` ( `' ( exp |` RR ) ` ( abs ` x ) ) ) = ( abs ` x ) ) |
|
| 76 | 28 27 75 | sylancr | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( ( exp |` RR ) ` ( `' ( exp |` RR ) ` ( abs ` x ) ) ) = ( abs ` x ) ) |
| 77 | 74 76 | eqtr3d | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( exp ` ( `' ( exp |` RR ) ` ( abs ` x ) ) ) = ( abs ` x ) ) |
| 78 | oveq2 | |- ( z = ( `' F ` ( x / ( abs ` x ) ) ) -> ( _i x. z ) = ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) |
|
| 79 | 78 | fveq2d | |- ( z = ( `' F ` ( x / ( abs ` x ) ) ) -> ( exp ` ( _i x. z ) ) = ( exp ` ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) |
| 80 | oveq2 | |- ( w = z -> ( _i x. w ) = ( _i x. z ) ) |
|
| 81 | 80 | fveq2d | |- ( w = z -> ( exp ` ( _i x. w ) ) = ( exp ` ( _i x. z ) ) ) |
| 82 | 81 | cbvmptv | |- ( w e. D |-> ( exp ` ( _i x. w ) ) ) = ( z e. D |-> ( exp ` ( _i x. z ) ) ) |
| 83 | 1 82 | eqtri | |- F = ( z e. D |-> ( exp ` ( _i x. z ) ) ) |
| 84 | fvex | |- ( exp ` ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) e. _V |
|
| 85 | 79 83 84 | fvmpt | |- ( ( `' F ` ( x / ( abs ` x ) ) ) e. D -> ( F ` ( `' F ` ( x / ( abs ` x ) ) ) ) = ( exp ` ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) |
| 86 | 59 85 | syl | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( F ` ( `' F ` ( x / ( abs ` x ) ) ) ) = ( exp ` ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) |
| 87 | 39 | adantr | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> F : D -1-1-onto-> ( `' abs " { 1 } ) ) |
| 88 | f1ocnvfv2 | |- ( ( F : D -1-1-onto-> ( `' abs " { 1 } ) /\ ( x / ( abs ` x ) ) e. ( `' abs " { 1 } ) ) -> ( F ` ( `' F ` ( x / ( abs ` x ) ) ) ) = ( x / ( abs ` x ) ) ) |
|
| 89 | 87 58 88 | syl2anc | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( F ` ( `' F ` ( x / ( abs ` x ) ) ) ) = ( x / ( abs ` x ) ) ) |
| 90 | 86 89 | eqtr3d | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( exp ` ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) = ( x / ( abs ` x ) ) ) |
| 91 | 77 90 | oveq12d | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( ( exp ` ( `' ( exp |` RR ) ` ( abs ` x ) ) ) x. ( exp ` ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) = ( ( abs ` x ) x. ( x / ( abs ` x ) ) ) ) |
| 92 | 25 45 46 | divcan2d | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> ( ( abs ` x ) x. ( x / ( abs ` x ) ) ) = x ) |
| 93 | 73 91 92 | 3eqtrrd | |- ( ( ph /\ x e. ( CC \ { 0 } ) ) -> x = ( exp ` ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) ) |
| 94 | 93 | adantrl | |- ( ( ph /\ ( y e. S /\ x e. ( CC \ { 0 } ) ) ) -> x = ( exp ` ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) ) |
| 95 | fveq2 | |- ( y = ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) -> ( exp ` y ) = ( exp ` ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) ) |
|
| 96 | 95 | eqeq2d | |- ( y = ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) -> ( x = ( exp ` y ) <-> x = ( exp ` ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) ) ) |
| 97 | 94 96 | syl5ibrcom | |- ( ( ph /\ ( y e. S /\ x e. ( CC \ { 0 } ) ) ) -> ( y = ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) -> x = ( exp ` y ) ) ) |
| 98 | 18 | adantl | |- ( ( ph /\ y e. S ) -> y e. CC ) |
| 99 | 98 | replimd | |- ( ( ph /\ y e. S ) -> y = ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) ) |
| 100 | absef | |- ( y e. CC -> ( abs ` ( exp ` y ) ) = ( exp ` ( Re ` y ) ) ) |
|
| 101 | 98 100 | syl | |- ( ( ph /\ y e. S ) -> ( abs ` ( exp ` y ) ) = ( exp ` ( Re ` y ) ) ) |
| 102 | 98 | recld | |- ( ( ph /\ y e. S ) -> ( Re ` y ) e. RR ) |
| 103 | 102 | fvresd | |- ( ( ph /\ y e. S ) -> ( ( exp |` RR ) ` ( Re ` y ) ) = ( exp ` ( Re ` y ) ) ) |
| 104 | 101 103 | eqtr4d | |- ( ( ph /\ y e. S ) -> ( abs ` ( exp ` y ) ) = ( ( exp |` RR ) ` ( Re ` y ) ) ) |
| 105 | 104 | fveq2d | |- ( ( ph /\ y e. S ) -> ( `' ( exp |` RR ) ` ( abs ` ( exp ` y ) ) ) = ( `' ( exp |` RR ) ` ( ( exp |` RR ) ` ( Re ` y ) ) ) ) |
| 106 | f1ocnvfv1 | |- ( ( ( exp |` RR ) : RR -1-1-onto-> RR+ /\ ( Re ` y ) e. RR ) -> ( `' ( exp |` RR ) ` ( ( exp |` RR ) ` ( Re ` y ) ) ) = ( Re ` y ) ) |
|
| 107 | 28 102 106 | sylancr | |- ( ( ph /\ y e. S ) -> ( `' ( exp |` RR ) ` ( ( exp |` RR ) ` ( Re ` y ) ) ) = ( Re ` y ) ) |
| 108 | 105 107 | eqtrd | |- ( ( ph /\ y e. S ) -> ( `' ( exp |` RR ) ` ( abs ` ( exp ` y ) ) ) = ( Re ` y ) ) |
| 109 | 98 | imcld | |- ( ( ph /\ y e. S ) -> ( Im ` y ) e. RR ) |
| 110 | 109 | recnd | |- ( ( ph /\ y e. S ) -> ( Im ` y ) e. CC ) |
| 111 | mulcl | |- ( ( _i e. CC /\ ( Im ` y ) e. CC ) -> ( _i x. ( Im ` y ) ) e. CC ) |
|
| 112 | 35 110 111 | sylancr | |- ( ( ph /\ y e. S ) -> ( _i x. ( Im ` y ) ) e. CC ) |
| 113 | efcl | |- ( ( _i x. ( Im ` y ) ) e. CC -> ( exp ` ( _i x. ( Im ` y ) ) ) e. CC ) |
|
| 114 | 112 113 | syl | |- ( ( ph /\ y e. S ) -> ( exp ` ( _i x. ( Im ` y ) ) ) e. CC ) |
| 115 | 102 | recnd | |- ( ( ph /\ y e. S ) -> ( Re ` y ) e. CC ) |
| 116 | efcl | |- ( ( Re ` y ) e. CC -> ( exp ` ( Re ` y ) ) e. CC ) |
|
| 117 | 115 116 | syl | |- ( ( ph /\ y e. S ) -> ( exp ` ( Re ` y ) ) e. CC ) |
| 118 | efne0 | |- ( ( Re ` y ) e. CC -> ( exp ` ( Re ` y ) ) =/= 0 ) |
|
| 119 | 115 118 | syl | |- ( ( ph /\ y e. S ) -> ( exp ` ( Re ` y ) ) =/= 0 ) |
| 120 | 114 117 119 | divcan3d | |- ( ( ph /\ y e. S ) -> ( ( ( exp ` ( Re ` y ) ) x. ( exp ` ( _i x. ( Im ` y ) ) ) ) / ( exp ` ( Re ` y ) ) ) = ( exp ` ( _i x. ( Im ` y ) ) ) ) |
| 121 | 99 | fveq2d | |- ( ( ph /\ y e. S ) -> ( exp ` y ) = ( exp ` ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) ) ) |
| 122 | efadd | |- ( ( ( Re ` y ) e. CC /\ ( _i x. ( Im ` y ) ) e. CC ) -> ( exp ` ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) ) = ( ( exp ` ( Re ` y ) ) x. ( exp ` ( _i x. ( Im ` y ) ) ) ) ) |
|
| 123 | 115 112 122 | syl2anc | |- ( ( ph /\ y e. S ) -> ( exp ` ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) ) = ( ( exp ` ( Re ` y ) ) x. ( exp ` ( _i x. ( Im ` y ) ) ) ) ) |
| 124 | 121 123 | eqtrd | |- ( ( ph /\ y e. S ) -> ( exp ` y ) = ( ( exp ` ( Re ` y ) ) x. ( exp ` ( _i x. ( Im ` y ) ) ) ) ) |
| 125 | 124 101 | oveq12d | |- ( ( ph /\ y e. S ) -> ( ( exp ` y ) / ( abs ` ( exp ` y ) ) ) = ( ( ( exp ` ( Re ` y ) ) x. ( exp ` ( _i x. ( Im ` y ) ) ) ) / ( exp ` ( Re ` y ) ) ) ) |
| 126 | elpreima | |- ( Im Fn CC -> ( y e. ( `' Im " D ) <-> ( y e. CC /\ ( Im ` y ) e. D ) ) ) |
|
| 127 | 7 67 126 | mp2b | |- ( y e. ( `' Im " D ) <-> ( y e. CC /\ ( Im ` y ) e. D ) ) |
| 128 | 127 | simprbi | |- ( y e. ( `' Im " D ) -> ( Im ` y ) e. D ) |
| 129 | 128 2 | eleq2s | |- ( y e. S -> ( Im ` y ) e. D ) |
| 130 | 129 | adantl | |- ( ( ph /\ y e. S ) -> ( Im ` y ) e. D ) |
| 131 | oveq2 | |- ( w = ( Im ` y ) -> ( _i x. w ) = ( _i x. ( Im ` y ) ) ) |
|
| 132 | 131 | fveq2d | |- ( w = ( Im ` y ) -> ( exp ` ( _i x. w ) ) = ( exp ` ( _i x. ( Im ` y ) ) ) ) |
| 133 | fvex | |- ( exp ` ( _i x. ( Im ` y ) ) ) e. _V |
|
| 134 | 132 1 133 | fvmpt | |- ( ( Im ` y ) e. D -> ( F ` ( Im ` y ) ) = ( exp ` ( _i x. ( Im ` y ) ) ) ) |
| 135 | 130 134 | syl | |- ( ( ph /\ y e. S ) -> ( F ` ( Im ` y ) ) = ( exp ` ( _i x. ( Im ` y ) ) ) ) |
| 136 | 120 125 135 | 3eqtr4d | |- ( ( ph /\ y e. S ) -> ( ( exp ` y ) / ( abs ` ( exp ` y ) ) ) = ( F ` ( Im ` y ) ) ) |
| 137 | 136 | fveq2d | |- ( ( ph /\ y e. S ) -> ( `' F ` ( ( exp ` y ) / ( abs ` ( exp ` y ) ) ) ) = ( `' F ` ( F ` ( Im ` y ) ) ) ) |
| 138 | f1ocnvfv1 | |- ( ( F : D -1-1-onto-> ( `' abs " { 1 } ) /\ ( Im ` y ) e. D ) -> ( `' F ` ( F ` ( Im ` y ) ) ) = ( Im ` y ) ) |
|
| 139 | 39 129 138 | syl2an | |- ( ( ph /\ y e. S ) -> ( `' F ` ( F ` ( Im ` y ) ) ) = ( Im ` y ) ) |
| 140 | 137 139 | eqtrd | |- ( ( ph /\ y e. S ) -> ( `' F ` ( ( exp ` y ) / ( abs ` ( exp ` y ) ) ) ) = ( Im ` y ) ) |
| 141 | 140 | oveq2d | |- ( ( ph /\ y e. S ) -> ( _i x. ( `' F ` ( ( exp ` y ) / ( abs ` ( exp ` y ) ) ) ) ) = ( _i x. ( Im ` y ) ) ) |
| 142 | 108 141 | oveq12d | |- ( ( ph /\ y e. S ) -> ( ( `' ( exp |` RR ) ` ( abs ` ( exp ` y ) ) ) + ( _i x. ( `' F ` ( ( exp ` y ) / ( abs ` ( exp ` y ) ) ) ) ) ) = ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) ) |
| 143 | 99 142 | eqtr4d | |- ( ( ph /\ y e. S ) -> y = ( ( `' ( exp |` RR ) ` ( abs ` ( exp ` y ) ) ) + ( _i x. ( `' F ` ( ( exp ` y ) / ( abs ` ( exp ` y ) ) ) ) ) ) ) |
| 144 | fveq2 | |- ( x = ( exp ` y ) -> ( abs ` x ) = ( abs ` ( exp ` y ) ) ) |
|
| 145 | 144 | fveq2d | |- ( x = ( exp ` y ) -> ( `' ( exp |` RR ) ` ( abs ` x ) ) = ( `' ( exp |` RR ) ` ( abs ` ( exp ` y ) ) ) ) |
| 146 | id | |- ( x = ( exp ` y ) -> x = ( exp ` y ) ) |
|
| 147 | 146 144 | oveq12d | |- ( x = ( exp ` y ) -> ( x / ( abs ` x ) ) = ( ( exp ` y ) / ( abs ` ( exp ` y ) ) ) ) |
| 148 | 147 | fveq2d | |- ( x = ( exp ` y ) -> ( `' F ` ( x / ( abs ` x ) ) ) = ( `' F ` ( ( exp ` y ) / ( abs ` ( exp ` y ) ) ) ) ) |
| 149 | 148 | oveq2d | |- ( x = ( exp ` y ) -> ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) = ( _i x. ( `' F ` ( ( exp ` y ) / ( abs ` ( exp ` y ) ) ) ) ) ) |
| 150 | 145 149 | oveq12d | |- ( x = ( exp ` y ) -> ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) = ( ( `' ( exp |` RR ) ` ( abs ` ( exp ` y ) ) ) + ( _i x. ( `' F ` ( ( exp ` y ) / ( abs ` ( exp ` y ) ) ) ) ) ) ) |
| 151 | 150 | eqeq2d | |- ( x = ( exp ` y ) -> ( y = ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) <-> y = ( ( `' ( exp |` RR ) ` ( abs ` ( exp ` y ) ) ) + ( _i x. ( `' F ` ( ( exp ` y ) / ( abs ` ( exp ` y ) ) ) ) ) ) ) ) |
| 152 | 143 151 | syl5ibrcom | |- ( ( ph /\ y e. S ) -> ( x = ( exp ` y ) -> y = ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) ) |
| 153 | 152 | adantrr | |- ( ( ph /\ ( y e. S /\ x e. ( CC \ { 0 } ) ) ) -> ( x = ( exp ` y ) -> y = ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) ) ) |
| 154 | 97 153 | impbid | |- ( ( ph /\ ( y e. S /\ x e. ( CC \ { 0 } ) ) ) -> ( y = ( ( `' ( exp |` RR ) ` ( abs ` x ) ) + ( _i x. ( `' F ` ( x / ( abs ` x ) ) ) ) ) <-> x = ( exp ` y ) ) ) |
| 155 | 17 21 71 154 | f1o2d | |- ( ph -> ( exp |` S ) : S -1-1-onto-> ( CC \ { 0 } ) ) |