This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function maps the set S , of complex numbers with imaginary part in the closed-above, open-below interval from -upi to pi one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008) (Revised by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eff1o.1 | ⊢ 𝑆 = ( ◡ ℑ “ ( - π (,] π ) ) | |
| Assertion | eff1o | ⊢ ( exp ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( ℂ ∖ { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eff1o.1 | ⊢ 𝑆 = ( ◡ ℑ “ ( - π (,] π ) ) | |
| 2 | pire | ⊢ π ∈ ℝ | |
| 3 | 2 | renegcli | ⊢ - π ∈ ℝ |
| 4 | eqid | ⊢ ( 𝑤 ∈ ( - π (,] π ) ↦ ( exp ‘ ( i · 𝑤 ) ) ) = ( 𝑤 ∈ ( - π (,] π ) ↦ ( exp ‘ ( i · 𝑤 ) ) ) | |
| 5 | rexr | ⊢ ( - π ∈ ℝ → - π ∈ ℝ* ) | |
| 6 | iocssre | ⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( - π (,] π ) ⊆ ℝ ) | |
| 7 | 5 2 6 | sylancl | ⊢ ( - π ∈ ℝ → ( - π (,] π ) ⊆ ℝ ) |
| 8 | picn | ⊢ π ∈ ℂ | |
| 9 | 8 | 2timesi | ⊢ ( 2 · π ) = ( π + π ) |
| 10 | 9 | oveq2i | ⊢ ( - π + ( 2 · π ) ) = ( - π + ( π + π ) ) |
| 11 | negpicn | ⊢ - π ∈ ℂ | |
| 12 | 8 8 | addcli | ⊢ ( π + π ) ∈ ℂ |
| 13 | 11 12 | addcomi | ⊢ ( - π + ( π + π ) ) = ( ( π + π ) + - π ) |
| 14 | 12 8 | negsubi | ⊢ ( ( π + π ) + - π ) = ( ( π + π ) − π ) |
| 15 | 8 8 | pncan3oi | ⊢ ( ( π + π ) − π ) = π |
| 16 | 14 15 | eqtri | ⊢ ( ( π + π ) + - π ) = π |
| 17 | 10 13 16 | 3eqtrri | ⊢ π = ( - π + ( 2 · π ) ) |
| 18 | 17 | oveq2i | ⊢ ( - π (,] π ) = ( - π (,] ( - π + ( 2 · π ) ) ) |
| 19 | 18 | efif1olem1 | ⊢ ( ( - π ∈ ℝ ∧ ( 𝑥 ∈ ( - π (,] π ) ∧ 𝑦 ∈ ( - π (,] π ) ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) |
| 20 | 18 | efif1olem2 | ⊢ ( ( - π ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ ( - π (,] π ) ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
| 21 | 4 1 7 19 20 | eff1olem | ⊢ ( - π ∈ ℝ → ( exp ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( ℂ ∖ { 0 } ) ) |
| 22 | 3 21 | ax-mp | ⊢ ( exp ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( ℂ ∖ { 0 } ) |