This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absef | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ 𝐴 ) ) = ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 3 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 4 | 3 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 5 | ax-icn | ⊢ i ∈ ℂ | |
| 6 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 7 | 6 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 8 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 9 | 5 7 8 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 10 | efadd | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) → ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) | |
| 11 | 4 9 10 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 12 | 2 11 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 13 | 12 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ 𝐴 ) ) = ( abs ‘ ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 14 | 3 | reefcld | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
| 15 | 14 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℂ ) |
| 16 | efcl | ⊢ ( ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ → ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ ) | |
| 17 | 9 16 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 18 | 15 17 | absmuld | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · ( abs ‘ ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 19 | absefi | ⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℝ → ( abs ‘ ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) = 1 ) | |
| 20 | 6 19 | syl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) = 1 ) |
| 21 | 20 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · ( abs ‘ ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · 1 ) ) |
| 22 | 13 18 21 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ 𝐴 ) ) = ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · 1 ) ) |
| 23 | 15 | abscld | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 24 | 23 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 25 | 24 | mulridd | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · 1 ) = ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) ) |
| 26 | efgt0 | ⊢ ( ( ℜ ‘ 𝐴 ) ∈ ℝ → 0 < ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) | |
| 27 | 3 26 | syl | ⊢ ( 𝐴 ∈ ℂ → 0 < ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) |
| 28 | 0re | ⊢ 0 ∈ ℝ | |
| 29 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( exp ‘ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) ) | |
| 30 | 28 14 29 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 0 < ( exp ‘ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) ) |
| 31 | 27 30 | mpd | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) |
| 32 | 14 31 | absidd | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) = ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) |
| 33 | 22 25 32 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ 𝐴 ) ) = ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) |