This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Chebyshev function is closed in the log-integers. (Contributed by Mario Carneiro, 22-Sep-2014) (Revised by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efchtcl | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( θ ‘ 𝐴 ) ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chtval | ⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( θ ‘ 𝐴 ) ) = ( exp ‘ Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) ) |
| 3 | ppifi | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ) | |
| 4 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) | |
| 5 | 4 | elin2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
| 6 | prmnn | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
| 8 | 7 | nnrpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
| 9 | 8 | relogcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 10 | 8 | reeflogd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( exp ‘ ( log ‘ 𝑝 ) ) = 𝑝 ) |
| 11 | 10 7 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( exp ‘ ( log ‘ 𝑝 ) ) ∈ ℕ ) |
| 12 | 3 9 11 | efnnfsumcl | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) ∈ ℕ ) |
| 13 | 2 12 | eqeltrd | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( θ ‘ 𝐴 ) ) ∈ ℕ ) |