This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chtfl | ⊢ ( 𝐴 ∈ ℝ → ( θ ‘ ( ⌊ ‘ 𝐴 ) ) = ( θ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flidm | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) = ( ⌊ ‘ 𝐴 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝐴 ∈ ℝ → ( 2 ... ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) ) = ( 2 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 3 | 2 | ineq1d | ⊢ ( 𝐴 ∈ ℝ → ( ( 2 ... ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 4 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | ppisval | ⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( ( 0 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) ) ∩ ℙ ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ ( ⌊ ‘ 𝐴 ) ) ) ∩ ℙ ) ) |
| 7 | ppisval | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) | |
| 8 | 3 6 7 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
| 9 | 8 | sumeq1d | ⊢ ( 𝐴 ∈ ℝ → Σ 𝑝 ∈ ( ( 0 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 10 | chtval | ⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( θ ‘ ( ⌊ ‘ 𝐴 ) ) = Σ 𝑝 ∈ ( ( 0 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) | |
| 11 | 4 10 | syl | ⊢ ( 𝐴 ∈ ℝ → ( θ ‘ ( ⌊ ‘ 𝐴 ) ) = Σ 𝑝 ∈ ( ( 0 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 12 | chtval | ⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) | |
| 13 | 9 11 12 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℝ → ( θ ‘ ( ⌊ ‘ 𝐴 ) ) = ( θ ‘ 𝐴 ) ) |