This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005) (Revised by Mario Carneiro, 3-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcllem.1 | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| fsumcllem.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | ||
| fsumcllem.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fsumcllem.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) | ||
| fsumcllem.5 | ⊢ ( 𝜑 → 0 ∈ 𝑆 ) | ||
| Assertion | fsumcllem | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcllem.1 | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 2 | fsumcllem.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 3 | fsumcllem.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | fsumcllem.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) | |
| 5 | fsumcllem.5 | ⊢ ( 𝜑 → 0 ∈ 𝑆 ) | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) | |
| 7 | 6 | sumeq1d | ⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) |
| 8 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 | |
| 9 | 7 8 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 10 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 0 ∈ 𝑆 ) |
| 11 | 9 10 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → Σ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
| 12 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝑆 ⊆ ℂ ) |
| 13 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 14 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Fin ) |
| 15 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) | |
| 17 | 12 13 14 15 16 | fsumcl2lem | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → Σ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
| 18 | 11 17 | pm2.61dane | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |