This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm function on the positive reals in terms of the real exponential function. (Contributed by Paul Chapman, 21-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrelog | ⊢ ( log ↾ ℝ+ ) = ◡ ( exp ↾ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima | ⊢ ( ( exp ↾ ran log ) “ ℝ ) = ran ( ( exp ↾ ran log ) ↾ ℝ ) | |
| 2 | relogrn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ran log ) | |
| 3 | 2 | ssriv | ⊢ ℝ ⊆ ran log |
| 4 | resabs1 | ⊢ ( ℝ ⊆ ran log → ( ( exp ↾ ran log ) ↾ ℝ ) = ( exp ↾ ℝ ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ( exp ↾ ran log ) ↾ ℝ ) = ( exp ↾ ℝ ) |
| 6 | 5 | rneqi | ⊢ ran ( ( exp ↾ ran log ) ↾ ℝ ) = ran ( exp ↾ ℝ ) |
| 7 | reeff1o | ⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ | |
| 8 | dff1o2 | ⊢ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ↔ ( ( exp ↾ ℝ ) Fn ℝ ∧ Fun ◡ ( exp ↾ ℝ ) ∧ ran ( exp ↾ ℝ ) = ℝ+ ) ) | |
| 9 | 7 8 | mpbi | ⊢ ( ( exp ↾ ℝ ) Fn ℝ ∧ Fun ◡ ( exp ↾ ℝ ) ∧ ran ( exp ↾ ℝ ) = ℝ+ ) |
| 10 | 9 | simp3i | ⊢ ran ( exp ↾ ℝ ) = ℝ+ |
| 11 | 1 6 10 | 3eqtri | ⊢ ( ( exp ↾ ran log ) “ ℝ ) = ℝ+ |
| 12 | 11 | reseq2i | ⊢ ( ◡ ( exp ↾ ran log ) ↾ ( ( exp ↾ ran log ) “ ℝ ) ) = ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) |
| 13 | 5 | cnveqi | ⊢ ◡ ( ( exp ↾ ran log ) ↾ ℝ ) = ◡ ( exp ↾ ℝ ) |
| 14 | logf1o | ⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log | |
| 15 | f1ofun | ⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → Fun log ) | |
| 16 | 14 15 | ax-mp | ⊢ Fun log |
| 17 | dflog2 | ⊢ log = ◡ ( exp ↾ ran log ) | |
| 18 | 17 | funeqi | ⊢ ( Fun log ↔ Fun ◡ ( exp ↾ ran log ) ) |
| 19 | 16 18 | mpbi | ⊢ Fun ◡ ( exp ↾ ran log ) |
| 20 | funcnvres | ⊢ ( Fun ◡ ( exp ↾ ran log ) → ◡ ( ( exp ↾ ran log ) ↾ ℝ ) = ( ◡ ( exp ↾ ran log ) ↾ ( ( exp ↾ ran log ) “ ℝ ) ) ) | |
| 21 | 19 20 | ax-mp | ⊢ ◡ ( ( exp ↾ ran log ) ↾ ℝ ) = ( ◡ ( exp ↾ ran log ) ↾ ( ( exp ↾ ran log ) “ ℝ ) ) |
| 22 | 13 21 | eqtr3i | ⊢ ◡ ( exp ↾ ℝ ) = ( ◡ ( exp ↾ ran log ) ↾ ( ( exp ↾ ran log ) “ ℝ ) ) |
| 23 | 17 | reseq1i | ⊢ ( log ↾ ℝ+ ) = ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) |
| 24 | 12 22 23 | 3eqtr4ri | ⊢ ( log ↾ ℝ+ ) = ◡ ( exp ↾ ℝ ) |