This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexico | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∃ 𝑗 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ↔ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 2 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 3 | icossre | ⊢ ( ( 𝐵 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝐵 [,) +∞ ) ⊆ ℝ ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 [,) +∞ ) ⊆ ℝ ) |
| 5 | ssrexv | ⊢ ( ( 𝐵 [,) +∞ ) ⊆ ℝ → ( ∃ 𝑗 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∃ 𝑗 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) |
| 7 | simpr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) → 𝑗 ∈ ℝ ) | |
| 8 | simplr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 9 | 7 8 | ifcld | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) → if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ∈ ℝ ) |
| 10 | max1 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → 𝐵 ≤ if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ) | |
| 11 | 10 | adantll | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) → 𝐵 ≤ if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ) |
| 12 | elicopnf | ⊢ ( 𝐵 ∈ ℝ → ( if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ∈ ( 𝐵 [,) +∞ ) ↔ ( if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ∈ ℝ ∧ 𝐵 ≤ if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ) ) ) | |
| 13 | 12 | ad2antlr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) → ( if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ∈ ( 𝐵 [,) +∞ ) ↔ ( if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ∈ ℝ ∧ 𝐵 ≤ if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ) ) ) |
| 14 | 9 11 13 | mpbir2and | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) → if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ∈ ( 𝐵 [,) +∞ ) ) |
| 15 | simpllr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 16 | simplr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → 𝑗 ∈ ℝ ) | |
| 17 | simpll | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) → 𝐴 ⊆ ℝ ) | |
| 18 | 17 | sselda | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ℝ ) |
| 19 | maxle | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ≤ 𝑘 ↔ ( 𝐵 ≤ 𝑘 ∧ 𝑗 ≤ 𝑘 ) ) ) | |
| 20 | 15 16 18 19 | syl3anc | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ( if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ≤ 𝑘 ↔ ( 𝐵 ≤ 𝑘 ∧ 𝑗 ≤ 𝑘 ) ) ) |
| 21 | simpr | ⊢ ( ( 𝐵 ≤ 𝑘 ∧ 𝑗 ≤ 𝑘 ) → 𝑗 ≤ 𝑘 ) | |
| 22 | 20 21 | biimtrdi | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ( if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ≤ 𝑘 → 𝑗 ≤ 𝑘 ) ) |
| 23 | 22 | imim1d | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑗 ≤ 𝑘 → 𝜑 ) → ( if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ≤ 𝑘 → 𝜑 ) ) ) |
| 24 | 23 | ralimdva | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) → ∀ 𝑘 ∈ 𝐴 ( if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ≤ 𝑘 → 𝜑 ) ) ) |
| 25 | breq1 | ⊢ ( 𝑛 = if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) → ( 𝑛 ≤ 𝑘 ↔ if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ≤ 𝑘 ) ) | |
| 26 | 25 | rspceaimv | ⊢ ( ( if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ∈ ( 𝐵 [,) +∞ ) ∧ ∀ 𝑘 ∈ 𝐴 ( if ( 𝐵 ≤ 𝑗 , 𝑗 , 𝐵 ) ≤ 𝑘 → 𝜑 ) ) → ∃ 𝑛 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑘 ∈ 𝐴 ( 𝑛 ≤ 𝑘 → 𝜑 ) ) |
| 27 | 14 24 26 | syl6an | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑗 ∈ ℝ ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) → ∃ 𝑛 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑘 ∈ 𝐴 ( 𝑛 ≤ 𝑘 → 𝜑 ) ) ) |
| 28 | 27 | rexlimdva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) → ∃ 𝑛 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑘 ∈ 𝐴 ( 𝑛 ≤ 𝑘 → 𝜑 ) ) ) |
| 29 | breq1 | ⊢ ( 𝑛 = 𝑗 → ( 𝑛 ≤ 𝑘 ↔ 𝑗 ≤ 𝑘 ) ) | |
| 30 | 29 | imbi1d | ⊢ ( 𝑛 = 𝑗 → ( ( 𝑛 ≤ 𝑘 → 𝜑 ) ↔ ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) |
| 31 | 30 | ralbidv | ⊢ ( 𝑛 = 𝑗 → ( ∀ 𝑘 ∈ 𝐴 ( 𝑛 ≤ 𝑘 → 𝜑 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) |
| 32 | 31 | cbvrexvw | ⊢ ( ∃ 𝑛 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑘 ∈ 𝐴 ( 𝑛 ≤ 𝑘 → 𝜑 ) ↔ ∃ 𝑗 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) |
| 33 | 28 32 | imbitrdi | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) → ∃ 𝑗 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) |
| 34 | 6 33 | impbid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∃ 𝑗 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ↔ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) |