This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvfsumrlim . Satisfy the assumption of dvfsumlem4 . (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | ||
| dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | ||
| dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | ||
| dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | ||
| dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | ||
| dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | ||
| dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | ||
| dvfsumrlim.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) → 𝐶 ≤ 𝐵 ) | ||
| dvfsumrlim.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) | ||
| dvfsumrlim.k | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) | ||
| Assertion | dvfsumrlimge0 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 0 ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| 2 | dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | |
| 6 | dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | |
| 7 | dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | |
| 8 | dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | |
| 9 | dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | |
| 10 | dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | |
| 11 | dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | |
| 12 | dvfsumrlim.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) → 𝐶 ≤ 𝐵 ) | |
| 13 | dvfsumrlim.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) | |
| 14 | dvfsumrlim.k | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) | |
| 15 | ioossre | ⊢ ( 𝑇 (,) +∞ ) ⊆ ℝ | |
| 16 | 1 15 | eqsstri | ⊢ 𝑆 ⊆ ℝ |
| 17 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑥 ∈ 𝑆 ) | |
| 18 | 16 17 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 19 | 18 | rexrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ* ) |
| 20 | 18 | renepnfd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑥 ≠ +∞ ) |
| 21 | icopnfsup | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑥 ≠ +∞ ) → sup ( ( 𝑥 [,) +∞ ) , ℝ* , < ) = +∞ ) | |
| 22 | 19 20 21 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → sup ( ( 𝑥 [,) +∞ ) , ℝ* , < ) = +∞ ) |
| 23 | 6 | rexrd | ⊢ ( 𝜑 → 𝑇 ∈ ℝ* ) |
| 24 | 17 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑥 ∈ ( 𝑇 (,) +∞ ) ) |
| 25 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑇 ∈ ℝ* ) |
| 26 | elioopnf | ⊢ ( 𝑇 ∈ ℝ* → ( 𝑥 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑇 < 𝑥 ) ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑥 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑇 < 𝑥 ) ) ) |
| 28 | 24 27 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑥 ∈ ℝ ∧ 𝑇 < 𝑥 ) ) |
| 29 | 28 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑇 < 𝑥 ) |
| 30 | df-ioo | ⊢ (,) = ( 𝑢 ∈ ℝ* , 𝑣 ∈ ℝ* ↦ { 𝑤 ∈ ℝ* ∣ ( 𝑢 < 𝑤 ∧ 𝑤 < 𝑣 ) } ) | |
| 31 | df-ico | ⊢ [,) = ( 𝑢 ∈ ℝ* , 𝑣 ∈ ℝ* ↦ { 𝑤 ∈ ℝ* ∣ ( 𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣 ) } ) | |
| 32 | xrltletr | ⊢ ( ( 𝑇 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑇 < 𝑥 ∧ 𝑥 ≤ 𝑧 ) → 𝑇 < 𝑧 ) ) | |
| 33 | 30 31 32 | ixxss1 | ⊢ ( ( 𝑇 ∈ ℝ* ∧ 𝑇 < 𝑥 ) → ( 𝑥 [,) +∞ ) ⊆ ( 𝑇 (,) +∞ ) ) |
| 34 | 23 29 33 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑥 [,) +∞ ) ⊆ ( 𝑇 (,) +∞ ) ) |
| 35 | 34 1 | sseqtrrdi | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑥 [,) +∞ ) ⊆ 𝑆 ) |
| 36 | 11 | cbvmptv | ⊢ ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) = ( 𝑘 ∈ 𝑆 ↦ 𝐶 ) |
| 37 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) |
| 38 | 36 37 | eqbrtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑘 ∈ 𝑆 ↦ 𝐶 ) ⇝𝑟 0 ) |
| 39 | 35 38 | rlimres2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑘 ∈ ( 𝑥 [,) +∞ ) ↦ 𝐶 ) ⇝𝑟 0 ) |
| 40 | 16 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 41 | 40 7 8 10 | dvmptrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
| 42 | 41 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐵 ∈ ℝ ) |
| 43 | 42 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐵 ∈ ℂ ) |
| 44 | rlimconst | ⊢ ( ( 𝑆 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝑘 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 𝐵 ) | |
| 45 | 40 43 44 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑘 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 𝐵 ) |
| 46 | 35 45 | rlimres2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑘 ∈ ( 𝑥 [,) +∞ ) ↦ 𝐵 ) ⇝𝑟 𝐵 ) |
| 47 | 41 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ ) |
| 49 | 35 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝑘 ∈ 𝑆 ) |
| 50 | 11 | eleq1d | ⊢ ( 𝑥 = 𝑘 → ( 𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ ) ) |
| 51 | 50 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ ∧ 𝑘 ∈ 𝑆 ) → 𝐶 ∈ ℝ ) |
| 52 | 48 49 51 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝐶 ∈ ℝ ) |
| 53 | 42 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝐵 ∈ ℝ ) |
| 54 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝜑 ) | |
| 55 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝑥 ∈ 𝑆 ) | |
| 56 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝐷 ≤ 𝑥 ) | |
| 57 | elicopnf | ⊢ ( 𝑥 ∈ ℝ → ( 𝑘 ∈ ( 𝑥 [,) +∞ ) ↔ ( 𝑘 ∈ ℝ ∧ 𝑥 ≤ 𝑘 ) ) ) | |
| 58 | 18 57 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑘 ∈ ( 𝑥 [,) +∞ ) ↔ ( 𝑘 ∈ ℝ ∧ 𝑥 ≤ 𝑘 ) ) ) |
| 59 | 58 | simplbda | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝑥 ≤ 𝑘 ) |
| 60 | 54 55 49 56 59 12 | syl122anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑥 [,) +∞ ) ) → 𝐶 ≤ 𝐵 ) |
| 61 | 22 39 46 52 53 60 | rlimle | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 0 ≤ 𝐵 ) |