This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvfsumrlim . (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | ||
| dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | ||
| dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | ||
| dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | ||
| dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | ||
| dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | ||
| dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | ||
| dvfsumrlimf.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) | ||
| Assertion | dvfsumrlimf | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| 2 | dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | |
| 6 | dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | |
| 7 | dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | |
| 8 | dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | |
| 9 | dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | |
| 10 | dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | |
| 11 | dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | |
| 12 | dvfsumrlimf.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) | |
| 13 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) | |
| 14 | 9 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ) |
| 16 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 17 | 16 2 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) → 𝑘 ∈ 𝑍 ) |
| 18 | 11 | eleq1d | ⊢ ( 𝑥 = 𝑘 → ( 𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ ) ) |
| 19 | 18 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) |
| 20 | 15 17 19 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐶 ∈ ℝ ) |
| 21 | 13 20 | fsumrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 ∈ ℝ ) |
| 22 | 21 7 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ∈ ℝ ) |
| 23 | 22 12 | fmptd | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℝ ) |