This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | breq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| breqdi.1 | ⊢ ( 𝜑 → 𝐶 𝐴 𝐷 ) | ||
| Assertion | breqdi | ⊢ ( 𝜑 → 𝐶 𝐵 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | breqdi.1 | ⊢ ( 𝜑 → 𝐶 𝐴 𝐷 ) | |
| 3 | 1 | breqd | ⊢ ( 𝜑 → ( 𝐶 𝐴 𝐷 ↔ 𝐶 𝐵 𝐷 ) ) |
| 4 | 2 3 | mpbid | ⊢ ( 𝜑 → 𝐶 𝐵 𝐷 ) |