This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvgt0 and dvlt0 . (Contributed by Mario Carneiro, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvgt0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| dvgt0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| dvgt0.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| dvgt0lem.d | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ 𝑆 ) | ||
| Assertion | dvgt0lem1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvgt0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | dvgt0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | dvgt0.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 4 | dvgt0lem.d | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ 𝑆 ) | |
| 5 | iccssxr | ⊢ ( 𝐴 [,] 𝐵 ) ⊆ ℝ* | |
| 6 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 7 | 5 6 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ ℝ* ) |
| 8 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 9 | 5 8 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ ℝ* ) |
| 10 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 11 | 1 2 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 13 | 12 6 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ ℝ ) |
| 14 | 12 8 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ ℝ ) |
| 15 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑋 < 𝑌 ) | |
| 16 | 13 14 15 | ltled | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑋 ≤ 𝑌 ) |
| 17 | ubicc2 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 18 | 7 9 16 17 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 19 | 18 | fvresd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 20 | lbicc2 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 21 | 7 9 16 20 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 22 | 21 | fvresd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 23 | 19 22 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ) |
| 24 | 23 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) = ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) |
| 25 | iccss2 | ⊢ ( ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑋 [,] 𝑌 ) ⊆ ( 𝐴 [,] 𝐵 ) ) | |
| 26 | 25 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 [,] 𝑌 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 27 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 28 | rescncf | ⊢ ( ( 𝑋 [,] 𝑌 ) ⊆ ( 𝐴 [,] 𝐵 ) → ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) ) | |
| 29 | 26 27 28 | sylc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) |
| 30 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ 𝑆 ) |
| 31 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐴 ∈ ℝ ) |
| 32 | 31 | rexrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐴 ∈ ℝ* ) |
| 33 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐵 ∈ ℝ ) |
| 34 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) ) | |
| 35 | 31 33 34 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) ) |
| 36 | 6 35 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) |
| 37 | 36 | simp2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐴 ≤ 𝑋 ) |
| 38 | iooss1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ) → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝑌 ) ) | |
| 39 | 32 37 38 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝑌 ) ) |
| 40 | 33 | rexrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐵 ∈ ℝ* ) |
| 41 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) ) | |
| 42 | 31 33 41 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) ) |
| 43 | 8 42 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) |
| 44 | 43 | simp3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑌 ≤ 𝐵 ) |
| 45 | iooss2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑌 ≤ 𝐵 ) → ( 𝐴 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 46 | 40 44 45 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝐴 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 47 | 39 46 | sstrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 48 | 30 47 | fssresd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) 𝑌 ) ) : ( 𝑋 (,) 𝑌 ) ⟶ 𝑆 ) |
| 49 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 50 | 49 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ℝ ⊆ ℂ ) |
| 51 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 52 | 3 51 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 54 | fss | ⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | |
| 55 | 53 49 54 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 56 | iccssre | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) | |
| 57 | 13 14 56 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
| 58 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 59 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 60 | 58 59 | dvres | ⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) ) ) |
| 61 | 50 55 12 57 60 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) ) ) |
| 62 | iccntr | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) = ( 𝑋 (,) 𝑌 ) ) | |
| 63 | 13 14 62 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) = ( 𝑋 (,) 𝑌 ) ) |
| 64 | 63 | reseq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) 𝑌 ) ) ) |
| 65 | 61 64 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) 𝑌 ) ) ) |
| 66 | 65 | feq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) : ( 𝑋 (,) 𝑌 ) ⟶ 𝑆 ↔ ( ( ℝ D 𝐹 ) ↾ ( 𝑋 (,) 𝑌 ) ) : ( 𝑋 (,) 𝑌 ) ⟶ 𝑆 ) ) |
| 67 | 48 66 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) : ( 𝑋 (,) 𝑌 ) ⟶ 𝑆 ) |
| 68 | 67 | fdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → dom ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) = ( 𝑋 (,) 𝑌 ) ) |
| 69 | 13 14 15 29 68 | mvth | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ∃ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) ‘ 𝑧 ) = ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) |
| 70 | 67 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) ∧ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) ‘ 𝑧 ) ∈ 𝑆 ) |
| 71 | eleq1 | ⊢ ( ( ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) ‘ 𝑧 ) = ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) → ( ( ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) ‘ 𝑧 ) ∈ 𝑆 ↔ ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ 𝑆 ) ) | |
| 72 | 70 71 | syl5ibcom | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) ∧ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) ‘ 𝑧 ) = ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) → ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ 𝑆 ) ) |
| 73 | 72 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ∃ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ) ‘ 𝑧 ) = ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) → ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ 𝑆 ) ) |
| 74 | 69 73 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑌 ) − ( ( 𝐹 ↾ ( 𝑋 [,] 𝑌 ) ) ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ 𝑆 ) |
| 75 | 24 74 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ 𝑆 ) |