This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdsplit.2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) | |
| dprdsplit.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | ||
| dprdsplit.u | ⊢ ( 𝜑 → 𝐼 = ( 𝐶 ∪ 𝐷 ) ) | ||
| dprdsplit.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| dprdsplit.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | ||
| Assertion | dprdsplit | ⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdsplit.2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) | |
| 2 | dprdsplit.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | |
| 3 | dprdsplit.u | ⊢ ( 𝜑 → 𝐼 = ( 𝐶 ∪ 𝐷 ) ) | |
| 4 | dprdsplit.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 5 | dprdsplit.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 6 | 1 | fdmd | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
| 7 | ssun1 | ⊢ 𝐶 ⊆ ( 𝐶 ∪ 𝐷 ) | |
| 8 | 7 3 | sseqtrrid | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐼 ) |
| 9 | 5 6 8 | dprdres | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 10 | 9 | simpld | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
| 11 | dprdsubg | ⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 13 | ssun2 | ⊢ 𝐷 ⊆ ( 𝐶 ∪ 𝐷 ) | |
| 14 | 13 3 | sseqtrrid | ⊢ ( 𝜑 → 𝐷 ⊆ 𝐼 ) |
| 15 | 5 6 14 | dprdres | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 16 | 15 | simpld | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) |
| 17 | dprdsubg | ⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 19 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 20 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 21 | 1 2 3 19 20 | dmdprdsplit | ⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ↔ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) |
| 22 | 5 21 | mpbid | ⊢ ( 𝜑 → ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) |
| 23 | 22 | simp2d | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 24 | 4 19 | lsmsubg | ⊢ ( ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 25 | 12 18 23 24 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 26 | 3 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↔ 𝑥 ∈ ( 𝐶 ∪ 𝐷 ) ) ) |
| 27 | elun | ⊢ ( 𝑥 ∈ ( 𝐶 ∪ 𝐷 ) ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷 ) ) | |
| 28 | 26 27 | bitrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷 ) ) ) |
| 29 | 28 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷 ) ) |
| 30 | fvres | ⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 32 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
| 33 | 1 8 | fssresd | ⊢ ( 𝜑 → ( 𝑆 ↾ 𝐶 ) : 𝐶 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 34 | 33 | fdmd | ⊢ ( 𝜑 → dom ( 𝑆 ↾ 𝐶 ) = 𝐶 ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → dom ( 𝑆 ↾ 𝐶 ) = 𝐶 ) |
| 36 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) | |
| 37 | 32 35 36 | dprdub | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑥 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
| 38 | 31 37 | eqsstrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
| 39 | 4 | lsmub1 | ⊢ ( ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 40 | 12 18 39 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 41 | 40 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 42 | 38 41 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 43 | fvres | ⊢ ( 𝑥 ∈ 𝐷 → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) | |
| 44 | 43 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 45 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) |
| 46 | 1 14 | fssresd | ⊢ ( 𝜑 → ( 𝑆 ↾ 𝐷 ) : 𝐷 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 47 | 46 | fdmd | ⊢ ( 𝜑 → dom ( 𝑆 ↾ 𝐷 ) = 𝐷 ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → dom ( 𝑆 ↾ 𝐷 ) = 𝐷 ) |
| 49 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝐷 ) | |
| 50 | 45 48 49 | dprdub | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑥 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) |
| 51 | 44 50 | eqsstrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) |
| 52 | 4 | lsmub2 | ⊢ ( ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 53 | 12 18 52 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 54 | 53 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 55 | 51 54 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 56 | 42 55 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 57 | 29 56 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 58 | 5 6 25 57 | dprdlub | ⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 59 | 9 | simprd | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 60 | 15 | simprd | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 61 | dprdsubg | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 62 | 5 61 | syl | ⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 63 | 4 | lsmlub | ⊢ ( ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ↔ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 64 | 12 18 62 63 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ↔ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 65 | 59 60 64 | mpbi2and | ⊢ ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 66 | 58 65 | eqssd | ⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |