This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdsplit.2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
|
| dprdsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
||
| dprdsplit.u | |- ( ph -> I = ( C u. D ) ) |
||
| dprdsplit.s | |- .(+) = ( LSSum ` G ) |
||
| dprdsplit.1 | |- ( ph -> G dom DProd S ) |
||
| Assertion | dprdsplit | |- ( ph -> ( G DProd S ) = ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdsplit.2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
|
| 2 | dprdsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
|
| 3 | dprdsplit.u | |- ( ph -> I = ( C u. D ) ) |
|
| 4 | dprdsplit.s | |- .(+) = ( LSSum ` G ) |
|
| 5 | dprdsplit.1 | |- ( ph -> G dom DProd S ) |
|
| 6 | 1 | fdmd | |- ( ph -> dom S = I ) |
| 7 | ssun1 | |- C C_ ( C u. D ) |
|
| 8 | 7 3 | sseqtrrid | |- ( ph -> C C_ I ) |
| 9 | 5 6 8 | dprdres | |- ( ph -> ( G dom DProd ( S |` C ) /\ ( G DProd ( S |` C ) ) C_ ( G DProd S ) ) ) |
| 10 | 9 | simpld | |- ( ph -> G dom DProd ( S |` C ) ) |
| 11 | dprdsubg | |- ( G dom DProd ( S |` C ) -> ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) ) |
|
| 12 | 10 11 | syl | |- ( ph -> ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) ) |
| 13 | ssun2 | |- D C_ ( C u. D ) |
|
| 14 | 13 3 | sseqtrrid | |- ( ph -> D C_ I ) |
| 15 | 5 6 14 | dprdres | |- ( ph -> ( G dom DProd ( S |` D ) /\ ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) ) |
| 16 | 15 | simpld | |- ( ph -> G dom DProd ( S |` D ) ) |
| 17 | dprdsubg | |- ( G dom DProd ( S |` D ) -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) |
|
| 18 | 16 17 | syl | |- ( ph -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) |
| 19 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 20 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 21 | 1 2 3 19 20 | dmdprdsplit | |- ( ph -> ( G dom DProd S <-> ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { ( 0g ` G ) } ) ) ) |
| 22 | 5 21 | mpbid | |- ( ph -> ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { ( 0g ` G ) } ) ) |
| 23 | 22 | simp2d | |- ( ph -> ( G DProd ( S |` C ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( S |` D ) ) ) ) |
| 24 | 4 19 | lsmsubg | |- ( ( ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) /\ ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) /\ ( G DProd ( S |` C ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( S |` D ) ) ) ) -> ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) e. ( SubGrp ` G ) ) |
| 25 | 12 18 23 24 | syl3anc | |- ( ph -> ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) e. ( SubGrp ` G ) ) |
| 26 | 3 | eleq2d | |- ( ph -> ( x e. I <-> x e. ( C u. D ) ) ) |
| 27 | elun | |- ( x e. ( C u. D ) <-> ( x e. C \/ x e. D ) ) |
|
| 28 | 26 27 | bitrdi | |- ( ph -> ( x e. I <-> ( x e. C \/ x e. D ) ) ) |
| 29 | 28 | biimpa | |- ( ( ph /\ x e. I ) -> ( x e. C \/ x e. D ) ) |
| 30 | fvres | |- ( x e. C -> ( ( S |` C ) ` x ) = ( S ` x ) ) |
|
| 31 | 30 | adantl | |- ( ( ph /\ x e. C ) -> ( ( S |` C ) ` x ) = ( S ` x ) ) |
| 32 | 10 | adantr | |- ( ( ph /\ x e. C ) -> G dom DProd ( S |` C ) ) |
| 33 | 1 8 | fssresd | |- ( ph -> ( S |` C ) : C --> ( SubGrp ` G ) ) |
| 34 | 33 | fdmd | |- ( ph -> dom ( S |` C ) = C ) |
| 35 | 34 | adantr | |- ( ( ph /\ x e. C ) -> dom ( S |` C ) = C ) |
| 36 | simpr | |- ( ( ph /\ x e. C ) -> x e. C ) |
|
| 37 | 32 35 36 | dprdub | |- ( ( ph /\ x e. C ) -> ( ( S |` C ) ` x ) C_ ( G DProd ( S |` C ) ) ) |
| 38 | 31 37 | eqsstrrd | |- ( ( ph /\ x e. C ) -> ( S ` x ) C_ ( G DProd ( S |` C ) ) ) |
| 39 | 4 | lsmub1 | |- ( ( ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) /\ ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) -> ( G DProd ( S |` C ) ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) ) |
| 40 | 12 18 39 | syl2anc | |- ( ph -> ( G DProd ( S |` C ) ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) ) |
| 41 | 40 | adantr | |- ( ( ph /\ x e. C ) -> ( G DProd ( S |` C ) ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) ) |
| 42 | 38 41 | sstrd | |- ( ( ph /\ x e. C ) -> ( S ` x ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) ) |
| 43 | fvres | |- ( x e. D -> ( ( S |` D ) ` x ) = ( S ` x ) ) |
|
| 44 | 43 | adantl | |- ( ( ph /\ x e. D ) -> ( ( S |` D ) ` x ) = ( S ` x ) ) |
| 45 | 16 | adantr | |- ( ( ph /\ x e. D ) -> G dom DProd ( S |` D ) ) |
| 46 | 1 14 | fssresd | |- ( ph -> ( S |` D ) : D --> ( SubGrp ` G ) ) |
| 47 | 46 | fdmd | |- ( ph -> dom ( S |` D ) = D ) |
| 48 | 47 | adantr | |- ( ( ph /\ x e. D ) -> dom ( S |` D ) = D ) |
| 49 | simpr | |- ( ( ph /\ x e. D ) -> x e. D ) |
|
| 50 | 45 48 49 | dprdub | |- ( ( ph /\ x e. D ) -> ( ( S |` D ) ` x ) C_ ( G DProd ( S |` D ) ) ) |
| 51 | 44 50 | eqsstrrd | |- ( ( ph /\ x e. D ) -> ( S ` x ) C_ ( G DProd ( S |` D ) ) ) |
| 52 | 4 | lsmub2 | |- ( ( ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) /\ ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) -> ( G DProd ( S |` D ) ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) ) |
| 53 | 12 18 52 | syl2anc | |- ( ph -> ( G DProd ( S |` D ) ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) ) |
| 54 | 53 | adantr | |- ( ( ph /\ x e. D ) -> ( G DProd ( S |` D ) ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) ) |
| 55 | 51 54 | sstrd | |- ( ( ph /\ x e. D ) -> ( S ` x ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) ) |
| 56 | 42 55 | jaodan | |- ( ( ph /\ ( x e. C \/ x e. D ) ) -> ( S ` x ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) ) |
| 57 | 29 56 | syldan | |- ( ( ph /\ x e. I ) -> ( S ` x ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) ) |
| 58 | 5 6 25 57 | dprdlub | |- ( ph -> ( G DProd S ) C_ ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) ) |
| 59 | 9 | simprd | |- ( ph -> ( G DProd ( S |` C ) ) C_ ( G DProd S ) ) |
| 60 | 15 | simprd | |- ( ph -> ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) |
| 61 | dprdsubg | |- ( G dom DProd S -> ( G DProd S ) e. ( SubGrp ` G ) ) |
|
| 62 | 5 61 | syl | |- ( ph -> ( G DProd S ) e. ( SubGrp ` G ) ) |
| 63 | 4 | lsmlub | |- ( ( ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) /\ ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) /\ ( G DProd S ) e. ( SubGrp ` G ) ) -> ( ( ( G DProd ( S |` C ) ) C_ ( G DProd S ) /\ ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) <-> ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) C_ ( G DProd S ) ) ) |
| 64 | 12 18 62 63 | syl3anc | |- ( ph -> ( ( ( G DProd ( S |` C ) ) C_ ( G DProd S ) /\ ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) <-> ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) C_ ( G DProd S ) ) ) |
| 65 | 59 60 64 | mpbi2and | |- ( ph -> ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) C_ ( G DProd S ) ) |
| 66 | 58 65 | eqssd | |- ( ph -> ( G DProd S ) = ( ( G DProd ( S |` C ) ) .(+) ( G DProd ( S |` D ) ) ) ) |