This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdss.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑇 ) | |
| dprdss.2 | ⊢ ( 𝜑 → dom 𝑇 = 𝐼 ) | ||
| dprdss.3 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) | ||
| dprdss.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) | ||
| Assertion | dprdss | ⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ∧ ( 𝐺 DProd 𝑆 ) ⊆ ( 𝐺 DProd 𝑇 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdss.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑇 ) | |
| 2 | dprdss.2 | ⊢ ( 𝜑 → dom 𝑇 = 𝐼 ) | |
| 3 | dprdss.3 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | dprdss.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) | |
| 5 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 8 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑇 → 𝐺 ∈ Grp ) | |
| 9 | 1 8 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 10 | 1 2 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 11 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) |
| 12 | fveq2 | ⊢ ( 𝑘 = 𝑥 → ( 𝑆 ‘ 𝑘 ) = ( 𝑆 ‘ 𝑥 ) ) | |
| 13 | fveq2 | ⊢ ( 𝑘 = 𝑥 → ( 𝑇 ‘ 𝑘 ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 14 | 12 13 | sseq12d | ⊢ ( 𝑘 = 𝑥 → ( ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ↔ ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ) ) |
| 15 | 14 | rspcv | ⊢ ( 𝑥 ∈ 𝐼 → ( ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ) ) |
| 16 | 11 15 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ) |
| 17 | 16 | 3ad2antr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ) |
| 18 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝐺 dom DProd 𝑇 ) |
| 19 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → dom 𝑇 = 𝐼 ) |
| 20 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ 𝐼 ) | |
| 21 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ 𝐼 ) | |
| 22 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ≠ 𝑦 ) | |
| 23 | 18 19 20 21 22 5 | dprdcntz | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑇 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
| 24 | 1 2 | dprdf2 | ⊢ ( 𝜑 → 𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 26 | 25 21 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑇 ‘ 𝑦 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 27 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 28 | 27 | subgss | ⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑇 ‘ 𝑦 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 29 | 26 28 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑇 ‘ 𝑦 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 30 | fveq2 | ⊢ ( 𝑘 = 𝑦 → ( 𝑆 ‘ 𝑘 ) = ( 𝑆 ‘ 𝑦 ) ) | |
| 31 | fveq2 | ⊢ ( 𝑘 = 𝑦 → ( 𝑇 ‘ 𝑘 ) = ( 𝑇 ‘ 𝑦 ) ) | |
| 32 | 30 31 | sseq12d | ⊢ ( 𝑘 = 𝑦 → ( ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ↔ ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑇 ‘ 𝑦 ) ) ) |
| 33 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) |
| 34 | 32 33 21 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑇 ‘ 𝑦 ) ) |
| 35 | 27 5 | cntz2ss | ⊢ ( ( ( 𝑇 ‘ 𝑦 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑇 ‘ 𝑦 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑇 ‘ 𝑦 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 36 | 29 34 35 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑇 ‘ 𝑦 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 37 | 23 36 | sstrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑇 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 38 | 17 37 | sstrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 39 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 ∈ Grp ) |
| 40 | 27 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 41 | acsmre | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) | |
| 42 | 39 40 41 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 43 | difss | ⊢ ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 | |
| 44 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) |
| 45 | ssralv | ⊢ ( ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 → ( ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) → ∀ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) ) | |
| 46 | 43 44 45 | mpsyl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∀ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) |
| 47 | ss2iun | ⊢ ( ∀ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑇 ‘ 𝑘 ) ) | |
| 48 | 46 47 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑇 ‘ 𝑘 ) ) |
| 49 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 50 | ffun | ⊢ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) → Fun 𝑆 ) | |
| 51 | funiunfv | ⊢ ( Fun 𝑆 → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) = ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) | |
| 52 | 49 50 51 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) = ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 53 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 54 | ffun | ⊢ ( 𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) → Fun 𝑇 ) | |
| 55 | funiunfv | ⊢ ( Fun 𝑇 → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑇 ‘ 𝑘 ) = ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) | |
| 56 | 53 54 55 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑇 ‘ 𝑘 ) = ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 57 | 48 52 56 | 3sstr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 58 | imassrn | ⊢ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ran 𝑇 | |
| 59 | 53 | frnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ran 𝑇 ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 60 | mresspw | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) | |
| 61 | 42 60 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 62 | 59 61 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ran 𝑇 ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 63 | 58 62 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 64 | sspwuni | ⊢ ( ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) | |
| 65 | 63 64 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 66 | 42 7 57 65 | mrcssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 67 | ss2in | ⊢ ( ( ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ⊆ ( ( 𝑇 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) | |
| 68 | 16 66 67 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ⊆ ( ( 𝑇 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 69 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 dom DProd 𝑇 ) |
| 70 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → dom 𝑇 = 𝐼 ) |
| 71 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 72 | 69 70 71 6 7 | dprddisj | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑇 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
| 73 | 68 72 | sseqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 74 | 5 6 7 9 10 3 38 73 | dmdprdd | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
| 75 | 1 | a1d | ⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 → 𝐺 dom DProd 𝑇 ) ) |
| 76 | ss2ixp | ⊢ ( ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) → X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ) | |
| 77 | 11 76 | syl | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ) |
| 78 | rabss2 | ⊢ ( X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) → { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ⊆ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) | |
| 79 | ssrexv | ⊢ ( { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ⊆ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } → ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) → ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) | |
| 80 | 77 78 79 | 3syl | ⊢ ( 𝜑 → ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) → ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) |
| 81 | 75 80 | anim12d | ⊢ ( 𝜑 → ( ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) → ( 𝐺 dom DProd 𝑇 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 82 | fdm | ⊢ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) → dom 𝑆 = 𝐼 ) | |
| 83 | eqid | ⊢ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } | |
| 84 | 6 83 | eldprd | ⊢ ( dom 𝑆 = 𝐼 → ( 𝑎 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 85 | 3 82 84 | 3syl | ⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 86 | eqid | ⊢ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } | |
| 87 | 6 86 | eldprd | ⊢ ( dom 𝑇 = 𝐼 → ( 𝑎 ∈ ( 𝐺 DProd 𝑇 ) ↔ ( 𝐺 dom DProd 𝑇 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 88 | 2 87 | syl | ⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐺 DProd 𝑇 ) ↔ ( 𝐺 dom DProd 𝑇 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 89 | 81 85 88 | 3imtr4d | ⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐺 DProd 𝑆 ) → 𝑎 ∈ ( 𝐺 DProd 𝑇 ) ) ) |
| 90 | 89 | ssrdv | ⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ⊆ ( 𝐺 DProd 𝑇 ) ) |
| 91 | 74 90 | jca | ⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ∧ ( 𝐺 DProd 𝑆 ) ⊆ ( 𝐺 DProd 𝑇 ) ) ) |