This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function S is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdcntz2.1 | |- ( ph -> G dom DProd S ) |
|
| dprdcntz2.2 | |- ( ph -> dom S = I ) |
||
| dprdcntz2.c | |- ( ph -> C C_ I ) |
||
| dprdcntz2.d | |- ( ph -> D C_ I ) |
||
| dprdcntz2.i | |- ( ph -> ( C i^i D ) = (/) ) |
||
| dprddisj2.0 | |- .0. = ( 0g ` G ) |
||
| Assertion | dprddisj2 | |- ( ph -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdcntz2.1 | |- ( ph -> G dom DProd S ) |
|
| 2 | dprdcntz2.2 | |- ( ph -> dom S = I ) |
|
| 3 | dprdcntz2.c | |- ( ph -> C C_ I ) |
|
| 4 | dprdcntz2.d | |- ( ph -> D C_ I ) |
|
| 5 | dprdcntz2.i | |- ( ph -> ( C i^i D ) = (/) ) |
|
| 6 | dprddisj2.0 | |- .0. = ( 0g ` G ) |
|
| 7 | inss1 | |- ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) C_ ( G DProd ( S |` C ) ) |
|
| 8 | 1 2 3 | dprdres | |- ( ph -> ( G dom DProd ( S |` C ) /\ ( G DProd ( S |` C ) ) C_ ( G DProd S ) ) ) |
| 9 | 8 | simprd | |- ( ph -> ( G DProd ( S |` C ) ) C_ ( G DProd S ) ) |
| 10 | 7 9 | sstrid | |- ( ph -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) C_ ( G DProd S ) ) |
| 11 | 10 | sseld | |- ( ph -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> x e. ( G DProd S ) ) ) |
| 12 | eqid | |- { h e. X_ i e. I ( S ` i ) | h finSupp .0. } = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| 13 | 6 12 | eldprd | |- ( dom S = I -> ( x e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } x = ( G gsum f ) ) ) ) |
| 14 | 2 13 | syl | |- ( ph -> ( x e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } x = ( G gsum f ) ) ) ) |
| 15 | 1 | ad2antrr | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> G dom DProd S ) |
| 16 | 2 | ad2antrr | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> dom S = I ) |
| 17 | simplr | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) |
|
| 18 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 19 | 12 15 16 17 18 | dprdff | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> f : I --> ( Base ` G ) ) |
| 20 | 19 | feqmptd | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> f = ( x e. I |-> ( f ` x ) ) ) |
| 21 | 5 | difeq2d | |- ( ph -> ( I \ ( C i^i D ) ) = ( I \ (/) ) ) |
| 22 | difindi | |- ( I \ ( C i^i D ) ) = ( ( I \ C ) u. ( I \ D ) ) |
|
| 23 | dif0 | |- ( I \ (/) ) = I |
|
| 24 | 21 22 23 | 3eqtr3g | |- ( ph -> ( ( I \ C ) u. ( I \ D ) ) = I ) |
| 25 | eqimss2 | |- ( ( ( I \ C ) u. ( I \ D ) ) = I -> I C_ ( ( I \ C ) u. ( I \ D ) ) ) |
|
| 26 | 24 25 | syl | |- ( ph -> I C_ ( ( I \ C ) u. ( I \ D ) ) ) |
| 27 | 26 | ad2antrr | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> I C_ ( ( I \ C ) u. ( I \ D ) ) ) |
| 28 | 27 | sselda | |- ( ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) /\ x e. I ) -> x e. ( ( I \ C ) u. ( I \ D ) ) ) |
| 29 | elun | |- ( x e. ( ( I \ C ) u. ( I \ D ) ) <-> ( x e. ( I \ C ) \/ x e. ( I \ D ) ) ) |
|
| 30 | 28 29 | sylib | |- ( ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) /\ x e. I ) -> ( x e. ( I \ C ) \/ x e. ( I \ D ) ) ) |
| 31 | 3 | ad2antrr | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> C C_ I ) |
| 32 | simprl | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> ( G gsum f ) e. ( G DProd ( S |` C ) ) ) |
|
| 33 | 6 12 15 16 31 17 32 | dmdprdsplitlem | |- ( ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) /\ x e. ( I \ C ) ) -> ( f ` x ) = .0. ) |
| 34 | 4 | ad2antrr | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> D C_ I ) |
| 35 | simprr | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> ( G gsum f ) e. ( G DProd ( S |` D ) ) ) |
|
| 36 | 6 12 15 16 34 17 35 | dmdprdsplitlem | |- ( ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) /\ x e. ( I \ D ) ) -> ( f ` x ) = .0. ) |
| 37 | 33 36 | jaodan | |- ( ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) /\ ( x e. ( I \ C ) \/ x e. ( I \ D ) ) ) -> ( f ` x ) = .0. ) |
| 38 | 30 37 | syldan | |- ( ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) /\ x e. I ) -> ( f ` x ) = .0. ) |
| 39 | 38 | mpteq2dva | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> ( x e. I |-> ( f ` x ) ) = ( x e. I |-> .0. ) ) |
| 40 | 20 39 | eqtrd | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> f = ( x e. I |-> .0. ) ) |
| 41 | 40 | oveq2d | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> ( G gsum f ) = ( G gsum ( x e. I |-> .0. ) ) ) |
| 42 | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
|
| 43 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 44 | 1 42 43 | 3syl | |- ( ph -> G e. Mnd ) |
| 45 | 1 2 | dprddomcld | |- ( ph -> I e. _V ) |
| 46 | 6 | gsumz | |- ( ( G e. Mnd /\ I e. _V ) -> ( G gsum ( x e. I |-> .0. ) ) = .0. ) |
| 47 | 44 45 46 | syl2anc | |- ( ph -> ( G gsum ( x e. I |-> .0. ) ) = .0. ) |
| 48 | 47 | ad2antrr | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> ( G gsum ( x e. I |-> .0. ) ) = .0. ) |
| 49 | 41 48 | eqtrd | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) /\ ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) -> ( G gsum f ) = .0. ) |
| 50 | 49 | ex | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) -> ( ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) -> ( G gsum f ) = .0. ) ) |
| 51 | eleq1 | |- ( x = ( G gsum f ) -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) <-> ( G gsum f ) e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) ) ) |
|
| 52 | elin | |- ( ( G gsum f ) e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) <-> ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) |
|
| 53 | 51 52 | bitrdi | |- ( x = ( G gsum f ) -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) <-> ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) ) ) |
| 54 | velsn | |- ( x e. { .0. } <-> x = .0. ) |
|
| 55 | eqeq1 | |- ( x = ( G gsum f ) -> ( x = .0. <-> ( G gsum f ) = .0. ) ) |
|
| 56 | 54 55 | bitrid | |- ( x = ( G gsum f ) -> ( x e. { .0. } <-> ( G gsum f ) = .0. ) ) |
| 57 | 53 56 | imbi12d | |- ( x = ( G gsum f ) -> ( ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> x e. { .0. } ) <-> ( ( ( G gsum f ) e. ( G DProd ( S |` C ) ) /\ ( G gsum f ) e. ( G DProd ( S |` D ) ) ) -> ( G gsum f ) = .0. ) ) ) |
| 58 | 50 57 | syl5ibrcom | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) -> ( x = ( G gsum f ) -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> x e. { .0. } ) ) ) |
| 59 | 58 | rexlimdva | |- ( ph -> ( E. f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } x = ( G gsum f ) -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> x e. { .0. } ) ) ) |
| 60 | 59 | adantld | |- ( ph -> ( ( G dom DProd S /\ E. f e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } x = ( G gsum f ) ) -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> x e. { .0. } ) ) ) |
| 61 | 14 60 | sylbid | |- ( ph -> ( x e. ( G DProd S ) -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> x e. { .0. } ) ) ) |
| 62 | 61 | com23 | |- ( ph -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> ( x e. ( G DProd S ) -> x e. { .0. } ) ) ) |
| 63 | 11 62 | mpdd | |- ( ph -> ( x e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) -> x e. { .0. } ) ) |
| 64 | 63 | ssrdv | |- ( ph -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) C_ { .0. } ) |
| 65 | 8 | simpld | |- ( ph -> G dom DProd ( S |` C ) ) |
| 66 | dprdsubg | |- ( G dom DProd ( S |` C ) -> ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) ) |
|
| 67 | 6 | subg0cl | |- ( ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) -> .0. e. ( G DProd ( S |` C ) ) ) |
| 68 | 65 66 67 | 3syl | |- ( ph -> .0. e. ( G DProd ( S |` C ) ) ) |
| 69 | 1 2 4 | dprdres | |- ( ph -> ( G dom DProd ( S |` D ) /\ ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) ) |
| 70 | 69 | simpld | |- ( ph -> G dom DProd ( S |` D ) ) |
| 71 | dprdsubg | |- ( G dom DProd ( S |` D ) -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) |
|
| 72 | 6 | subg0cl | |- ( ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) -> .0. e. ( G DProd ( S |` D ) ) ) |
| 73 | 70 71 72 | 3syl | |- ( ph -> .0. e. ( G DProd ( S |` D ) ) ) |
| 74 | 68 73 | elind | |- ( ph -> .0. e. ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) ) |
| 75 | 74 | snssd | |- ( ph -> { .0. } C_ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) ) |
| 76 | 64 75 | eqssd | |- ( ph -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |