This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set union cancellation law for dominance. (Contributed by Stefan O'Rear, 19-Feb-2015) (Revised by Stefan O'Rear, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domunfican | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym | ⊢ ( 𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵 ) | |
| 2 | bren | ⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐵 ≈ 𝐴 → ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
| 4 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 5 | sseq1 | ⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) | |
| 6 | 5 | anbi1d | ⊢ ( 𝑎 = ∅ → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ↔ ( ∅ ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) ) |
| 7 | 6 | anbi1d | ⊢ ( 𝑎 = ∅ → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ↔ ( ( ∅ ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) ) |
| 8 | uneq1 | ⊢ ( 𝑎 = ∅ → ( 𝑎 ∪ 𝑋 ) = ( ∅ ∪ 𝑋 ) ) | |
| 9 | imaeq2 | ⊢ ( 𝑎 = ∅ → ( 𝑓 “ 𝑎 ) = ( 𝑓 “ ∅ ) ) | |
| 10 | 9 | uneq1d | ⊢ ( 𝑎 = ∅ → ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) = ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ) |
| 11 | 8 10 | breq12d | ⊢ ( 𝑎 = ∅ → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ) ) |
| 12 | 11 | bibi1d | ⊢ ( 𝑎 = ∅ → ( ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 13 | 7 12 | imbi12d | ⊢ ( 𝑎 = ∅ → ( ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ↔ ( ( ( ∅ ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 14 | sseq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ 𝐴 ↔ 𝑏 ⊆ 𝐴 ) ) | |
| 15 | 14 | anbi1d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ↔ ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) ) |
| 16 | 15 | anbi1d | ⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ↔ ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) ) |
| 17 | uneq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∪ 𝑋 ) = ( 𝑏 ∪ 𝑋 ) ) | |
| 18 | imaeq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝑓 “ 𝑎 ) = ( 𝑓 “ 𝑏 ) ) | |
| 19 | 18 | uneq1d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) = ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) |
| 20 | 17 19 | breq12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
| 21 | 20 | bibi1d | ⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 22 | 16 21 | imbi12d | ⊢ ( 𝑎 = 𝑏 → ( ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ↔ ( ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 23 | sseq1 | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ 𝐴 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ) ) | |
| 24 | 23 | anbi1d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ↔ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) ) |
| 25 | 24 | anbi1d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ↔ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) ) |
| 26 | uneq1 | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ∪ 𝑋 ) = ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ) | |
| 27 | imaeq2 | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑓 “ 𝑎 ) = ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ) | |
| 28 | 27 | uneq1d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) = ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ) |
| 29 | 26 28 | breq12d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ) ) |
| 30 | 29 | bibi1d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 31 | 25 30 | imbi12d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ↔ ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 32 | sseq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 33 | 32 | anbi1d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ↔ ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) ) |
| 34 | 33 | anbi1d | ⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ↔ ( ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) ) |
| 35 | uneq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 ∪ 𝑋 ) = ( 𝐴 ∪ 𝑋 ) ) | |
| 36 | imaeq2 | ⊢ ( 𝑎 = 𝐴 → ( 𝑓 “ 𝑎 ) = ( 𝑓 “ 𝐴 ) ) | |
| 37 | 36 | uneq1d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) = ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ) |
| 38 | 35 37 | breq12d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ) ) |
| 39 | 38 | bibi1d | ⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 40 | 34 39 | imbi12d | ⊢ ( 𝑎 = 𝐴 → ( ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ↔ ( ( ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 41 | uncom | ⊢ ( ∅ ∪ 𝑋 ) = ( 𝑋 ∪ ∅ ) | |
| 42 | un0 | ⊢ ( 𝑋 ∪ ∅ ) = 𝑋 | |
| 43 | 41 42 | eqtri | ⊢ ( ∅ ∪ 𝑋 ) = 𝑋 |
| 44 | ima0 | ⊢ ( 𝑓 “ ∅ ) = ∅ | |
| 45 | 44 | uneq1i | ⊢ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) = ( ∅ ∪ 𝑌 ) |
| 46 | uncom | ⊢ ( ∅ ∪ 𝑌 ) = ( 𝑌 ∪ ∅ ) | |
| 47 | un0 | ⊢ ( 𝑌 ∪ ∅ ) = 𝑌 | |
| 48 | 46 47 | eqtri | ⊢ ( ∅ ∪ 𝑌 ) = 𝑌 |
| 49 | 45 48 | eqtri | ⊢ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) = 𝑌 |
| 50 | 43 49 | breq12i | ⊢ ( ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) |
| 51 | 50 | a1i | ⊢ ( ( ( ∅ ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |
| 52 | ssun1 | ⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) | |
| 53 | sstr2 | ⊢ ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → 𝑏 ⊆ 𝐴 ) ) | |
| 54 | 52 53 | ax-mp | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → 𝑏 ⊆ 𝐴 ) |
| 55 | 54 | anim1i | ⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) |
| 56 | 55 | anim1i | ⊢ ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) |
| 57 | 56 | imim1i | ⊢ ( ( ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) → ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 58 | uncom | ⊢ ( 𝑏 ∪ { 𝑐 } ) = ( { 𝑐 } ∪ 𝑏 ) | |
| 59 | 58 | uneq1i | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) = ( ( { 𝑐 } ∪ 𝑏 ) ∪ 𝑋 ) |
| 60 | unass | ⊢ ( ( { 𝑐 } ∪ 𝑏 ) ∪ 𝑋 ) = ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) | |
| 61 | 59 60 | eqtri | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) = ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) |
| 62 | 61 | a1i | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) = ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) ) |
| 63 | imaundi | ⊢ ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) = ( ( 𝑓 “ 𝑏 ) ∪ ( 𝑓 “ { 𝑐 } ) ) | |
| 64 | simprlr | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 65 | f1ofn | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 Fn 𝐴 ) | |
| 66 | 64 65 | syl | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → 𝑓 Fn 𝐴 ) |
| 67 | ssun2 | ⊢ { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) | |
| 68 | sstr2 | ⊢ ( { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → { 𝑐 } ⊆ 𝐴 ) ) | |
| 69 | 67 68 | ax-mp | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → { 𝑐 } ⊆ 𝐴 ) |
| 70 | vex | ⊢ 𝑐 ∈ V | |
| 71 | 70 | snss | ⊢ ( 𝑐 ∈ 𝐴 ↔ { 𝑐 } ⊆ 𝐴 ) |
| 72 | 69 71 | sylibr | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → 𝑐 ∈ 𝐴 ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → 𝑐 ∈ 𝐴 ) |
| 74 | 73 | ad2antrl | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → 𝑐 ∈ 𝐴 ) |
| 75 | fnsnfv | ⊢ ( ( 𝑓 Fn 𝐴 ∧ 𝑐 ∈ 𝐴 ) → { ( 𝑓 ‘ 𝑐 ) } = ( 𝑓 “ { 𝑐 } ) ) | |
| 76 | 66 74 75 | syl2anc | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → { ( 𝑓 ‘ 𝑐 ) } = ( 𝑓 “ { 𝑐 } ) ) |
| 77 | 76 | eqcomd | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑓 “ { 𝑐 } ) = { ( 𝑓 ‘ 𝑐 ) } ) |
| 78 | 77 | uneq2d | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( 𝑓 “ 𝑏 ) ∪ ( 𝑓 “ { 𝑐 } ) ) = ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ) |
| 79 | 63 78 | eqtrid | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) = ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ) |
| 80 | 79 | uneq1d | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) = ( ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ∪ 𝑌 ) ) |
| 81 | uncom | ⊢ ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) = ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( 𝑓 “ 𝑏 ) ) | |
| 82 | 81 | uneq1i | ⊢ ( ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ∪ 𝑌 ) = ( ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( 𝑓 “ 𝑏 ) ) ∪ 𝑌 ) |
| 83 | unass | ⊢ ( ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( 𝑓 “ 𝑏 ) ) ∪ 𝑌 ) = ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) | |
| 84 | 82 83 | eqtri | ⊢ ( ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ∪ 𝑌 ) = ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) |
| 85 | 80 84 | eqtrdi | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) = ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
| 86 | 62 85 | breq12d | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) ≼ ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) ) |
| 87 | simplr | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ 𝑐 ∈ 𝑏 ) | |
| 88 | incom | ⊢ ( 𝑋 ∩ 𝐴 ) = ( 𝐴 ∩ 𝑋 ) | |
| 89 | simprrl | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝐴 ∩ 𝑋 ) = ∅ ) | |
| 90 | 88 89 | eqtrid | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑋 ∩ 𝐴 ) = ∅ ) |
| 91 | minel | ⊢ ( ( 𝑐 ∈ 𝐴 ∧ ( 𝑋 ∩ 𝐴 ) = ∅ ) → ¬ 𝑐 ∈ 𝑋 ) | |
| 92 | 74 90 91 | syl2anc | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ 𝑐 ∈ 𝑋 ) |
| 93 | ioran | ⊢ ( ¬ ( 𝑐 ∈ 𝑏 ∨ 𝑐 ∈ 𝑋 ) ↔ ( ¬ 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑋 ) ) | |
| 94 | elun | ⊢ ( 𝑐 ∈ ( 𝑏 ∪ 𝑋 ) ↔ ( 𝑐 ∈ 𝑏 ∨ 𝑐 ∈ 𝑋 ) ) | |
| 95 | 93 94 | xchnxbir | ⊢ ( ¬ 𝑐 ∈ ( 𝑏 ∪ 𝑋 ) ↔ ( ¬ 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑋 ) ) |
| 96 | 87 92 95 | sylanbrc | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ 𝑐 ∈ ( 𝑏 ∪ 𝑋 ) ) |
| 97 | simplr | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) → ¬ 𝑐 ∈ 𝑏 ) | |
| 98 | f1of1 | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –1-1→ 𝐵 ) | |
| 99 | 98 | adantl | ⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 100 | 54 | adantr | ⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → 𝑏 ⊆ 𝐴 ) |
| 101 | f1elima | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑐 ∈ 𝐴 ∧ 𝑏 ⊆ 𝐴 ) → ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ↔ 𝑐 ∈ 𝑏 ) ) | |
| 102 | 99 73 100 101 | syl3anc | ⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ↔ 𝑐 ∈ 𝑏 ) ) |
| 103 | 102 | biimpd | ⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) → 𝑐 ∈ 𝑏 ) ) |
| 104 | 103 | adantl | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) → 𝑐 ∈ 𝑏 ) ) |
| 105 | 97 104 | mtod | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ) |
| 106 | 105 | adantrr | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ) |
| 107 | f1of | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 108 | 64 107 | syl | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → 𝑓 : 𝐴 ⟶ 𝐵 ) |
| 109 | 108 74 | ffvelcdmd | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑓 ‘ 𝑐 ) ∈ 𝐵 ) |
| 110 | incom | ⊢ ( 𝑌 ∩ 𝐵 ) = ( 𝐵 ∩ 𝑌 ) | |
| 111 | simprrr | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝐵 ∩ 𝑌 ) = ∅ ) | |
| 112 | 110 111 | eqtrid | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑌 ∩ 𝐵 ) = ∅ ) |
| 113 | minel | ⊢ ( ( ( 𝑓 ‘ 𝑐 ) ∈ 𝐵 ∧ ( 𝑌 ∩ 𝐵 ) = ∅ ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) | |
| 114 | 109 112 113 | syl2anc | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) |
| 115 | ioran | ⊢ ( ¬ ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ∨ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) ↔ ( ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ∧ ¬ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) ) | |
| 116 | elun | ⊢ ( ( 𝑓 ‘ 𝑐 ) ∈ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ∨ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) ) | |
| 117 | 115 116 | xchnxbir | ⊢ ( ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ ( ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ∧ ¬ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) ) |
| 118 | 106 114 117 | sylanbrc | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) |
| 119 | fvex | ⊢ ( 𝑓 ‘ 𝑐 ) ∈ V | |
| 120 | 70 119 | domunsncan | ⊢ ( ( ¬ 𝑐 ∈ ( 𝑏 ∪ 𝑋 ) ∧ ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) → ( ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) ≼ ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
| 121 | 96 118 120 | syl2anc | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) ≼ ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
| 122 | 86 121 | bitrd | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
| 123 | bitr | ⊢ ( ( ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ∧ ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) | |
| 124 | 123 | ex | ⊢ ( ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) → ( ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 125 | 122 124 | syl | ⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 126 | 125 | ex | ⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 127 | 126 | a2d | ⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) → ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 128 | 57 127 | syl5 | ⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) → ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 129 | 13 22 31 40 51 128 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( ( ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 130 | 129 | expd | ⊢ ( 𝐴 ∈ Fin → ( ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 131 | 4 130 | mpani | ⊢ ( 𝐴 ∈ Fin → ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 132 | 131 | 3imp | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |
| 133 | f1ofo | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –onto→ 𝐵 ) | |
| 134 | foima | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ( 𝑓 “ 𝐴 ) = 𝐵 ) | |
| 135 | 133 134 | syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑓 “ 𝐴 ) = 𝐵 ) |
| 136 | 135 | uneq1d | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) = ( 𝐵 ∪ 𝑌 ) ) |
| 137 | 136 | breq2d | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ) ) |
| 138 | 137 | bibi1d | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 139 | 138 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 140 | 132 139 | mpbid | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |
| 141 | 140 | 3exp | ⊢ ( 𝐴 ∈ Fin → ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 142 | 141 | exlimdv | ⊢ ( 𝐴 ∈ Fin → ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 143 | 3 142 | syl5 | ⊢ ( 𝐴 ∈ Fin → ( 𝐵 ≈ 𝐴 → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 144 | 143 | imp31 | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |