This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every infinite set has a denumerable subset. Similar to Exercise 8 of TakeutiZaring p. 91. (However, we need neither AC nor the Axiom of Infinity because of the way we express "infinite" in the antecedent.) (Contributed by NM, 23-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | infcntss.1 | ⊢ 𝐴 ∈ V | |
| Assertion | infcntss | ⊢ ( ω ≼ 𝐴 → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcntss.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | domen | ⊢ ( ω ≼ 𝐴 ↔ ∃ 𝑥 ( ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) |
| 3 | ensym | ⊢ ( ω ≈ 𝑥 → 𝑥 ≈ ω ) | |
| 4 | 3 | anim1ci | ⊢ ( ( ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω ) ) |
| 5 | 4 | eximi | ⊢ ( ∃ 𝑥 ( ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω ) ) |
| 6 | 2 5 | sylbi | ⊢ ( ω ≼ 𝐴 → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω ) ) |