This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton cancellation law for dominance. (Contributed by Stefan O'Rear, 19-Feb-2015) (Revised by Stefan O'Rear, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | domunsncan.a | ⊢ 𝐴 ∈ V | |
| domunsncan.b | ⊢ 𝐵 ∈ V | ||
| Assertion | domunsncan | ⊢ ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) → ( ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domunsncan.a | ⊢ 𝐴 ∈ V | |
| 2 | domunsncan.b | ⊢ 𝐵 ∈ V | |
| 3 | ssun2 | ⊢ 𝑌 ⊆ ( { 𝐵 } ∪ 𝑌 ) | |
| 4 | reldom | ⊢ Rel ≼ | |
| 5 | 4 | brrelex2i | ⊢ ( ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) → ( { 𝐵 } ∪ 𝑌 ) ∈ V ) |
| 6 | 5 | adantl | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ) → ( { 𝐵 } ∪ 𝑌 ) ∈ V ) |
| 7 | ssexg | ⊢ ( ( 𝑌 ⊆ ( { 𝐵 } ∪ 𝑌 ) ∧ ( { 𝐵 } ∪ 𝑌 ) ∈ V ) → 𝑌 ∈ V ) | |
| 8 | 3 6 7 | sylancr | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ) → 𝑌 ∈ V ) |
| 9 | brdomi | ⊢ ( ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) → ∃ 𝑓 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) | |
| 10 | vex | ⊢ 𝑓 ∈ V | |
| 11 | 10 | resex | ⊢ ( 𝑓 ↾ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ∈ V |
| 12 | simprr | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) | |
| 13 | difss | ⊢ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ⊆ ( { 𝐴 } ∪ 𝑋 ) | |
| 14 | f1ores | ⊢ ( ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ∧ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ⊆ ( { 𝐴 } ∪ 𝑋 ) ) → ( 𝑓 ↾ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) : ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) –1-1-onto→ ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ) | |
| 15 | 12 13 14 | sylancl | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( 𝑓 ↾ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) : ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) –1-1-onto→ ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ) |
| 16 | f1oen3g | ⊢ ( ( ( 𝑓 ↾ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ∈ V ∧ ( 𝑓 ↾ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) : ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) –1-1-onto→ ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ) → ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ≈ ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ) | |
| 17 | 11 15 16 | sylancr | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ≈ ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ) |
| 18 | df-f1 | ⊢ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ↔ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) ⟶ ( { 𝐵 } ∪ 𝑌 ) ∧ Fun ◡ 𝑓 ) ) | |
| 19 | imadif | ⊢ ( Fun ◡ 𝑓 → ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) = ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ) | |
| 20 | 18 19 | simplbiim | ⊢ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) → ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) = ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ) |
| 21 | 20 | ad2antll | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) = ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ) |
| 22 | snex | ⊢ { 𝐵 } ∈ V | |
| 23 | simprl | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → 𝑌 ∈ V ) | |
| 24 | unexg | ⊢ ( ( { 𝐵 } ∈ V ∧ 𝑌 ∈ V ) → ( { 𝐵 } ∪ 𝑌 ) ∈ V ) | |
| 25 | 22 23 24 | sylancr | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( { 𝐵 } ∪ 𝑌 ) ∈ V ) |
| 26 | 25 | difexd | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ∈ V ) |
| 27 | f1f | ⊢ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) → 𝑓 : ( { 𝐴 } ∪ 𝑋 ) ⟶ ( { 𝐵 } ∪ 𝑌 ) ) | |
| 28 | fimass | ⊢ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) ⟶ ( { 𝐵 } ∪ 𝑌 ) → ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ⊆ ( { 𝐵 } ∪ 𝑌 ) ) | |
| 29 | 27 28 | syl | ⊢ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) → ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ⊆ ( { 𝐵 } ∪ 𝑌 ) ) |
| 30 | 29 | ad2antll | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ⊆ ( { 𝐵 } ∪ 𝑌 ) ) |
| 31 | 30 | ssdifd | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ⊆ ( ( { 𝐵 } ∪ 𝑌 ) ∖ ( 𝑓 “ { 𝐴 } ) ) ) |
| 32 | f1fn | ⊢ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) → 𝑓 Fn ( { 𝐴 } ∪ 𝑋 ) ) | |
| 33 | 32 | ad2antll | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → 𝑓 Fn ( { 𝐴 } ∪ 𝑋 ) ) |
| 34 | 1 | snid | ⊢ 𝐴 ∈ { 𝐴 } |
| 35 | elun1 | ⊢ ( 𝐴 ∈ { 𝐴 } → 𝐴 ∈ ( { 𝐴 } ∪ 𝑋 ) ) | |
| 36 | 34 35 | ax-mp | ⊢ 𝐴 ∈ ( { 𝐴 } ∪ 𝑋 ) |
| 37 | fnsnfv | ⊢ ( ( 𝑓 Fn ( { 𝐴 } ∪ 𝑋 ) ∧ 𝐴 ∈ ( { 𝐴 } ∪ 𝑋 ) ) → { ( 𝑓 ‘ 𝐴 ) } = ( 𝑓 “ { 𝐴 } ) ) | |
| 38 | 33 36 37 | sylancl | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → { ( 𝑓 ‘ 𝐴 ) } = ( 𝑓 “ { 𝐴 } ) ) |
| 39 | 38 | difeq2d | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) = ( ( { 𝐵 } ∪ 𝑌 ) ∖ ( 𝑓 “ { 𝐴 } ) ) ) |
| 40 | 31 39 | sseqtrrd | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ⊆ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ) |
| 41 | ssdomg | ⊢ ( ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ∈ V → ( ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ⊆ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) → ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ) ) | |
| 42 | 26 40 41 | sylc | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ) |
| 43 | ffvelcdm | ⊢ ( ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) ⟶ ( { 𝐵 } ∪ 𝑌 ) ∧ 𝐴 ∈ ( { 𝐴 } ∪ 𝑋 ) ) → ( 𝑓 ‘ 𝐴 ) ∈ ( { 𝐵 } ∪ 𝑌 ) ) | |
| 44 | 27 36 43 | sylancl | ⊢ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) → ( 𝑓 ‘ 𝐴 ) ∈ ( { 𝐵 } ∪ 𝑌 ) ) |
| 45 | 44 | ad2antll | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( 𝑓 ‘ 𝐴 ) ∈ ( { 𝐵 } ∪ 𝑌 ) ) |
| 46 | 2 | snid | ⊢ 𝐵 ∈ { 𝐵 } |
| 47 | elun1 | ⊢ ( 𝐵 ∈ { 𝐵 } → 𝐵 ∈ ( { 𝐵 } ∪ 𝑌 ) ) | |
| 48 | 46 47 | mp1i | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → 𝐵 ∈ ( { 𝐵 } ∪ 𝑌 ) ) |
| 49 | difsnen | ⊢ ( ( ( { 𝐵 } ∪ 𝑌 ) ∈ V ∧ ( 𝑓 ‘ 𝐴 ) ∈ ( { 𝐵 } ∪ 𝑌 ) ∧ 𝐵 ∈ ( { 𝐵 } ∪ 𝑌 ) ) → ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) | |
| 50 | 25 45 48 49 | syl3anc | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) |
| 51 | domentr | ⊢ ( ( ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ∧ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) → ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) | |
| 52 | 42 50 51 | syl2anc | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) |
| 53 | 21 52 | eqbrtrd | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) |
| 54 | endomtr | ⊢ ( ( ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ≈ ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ∧ ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) → ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) | |
| 55 | 17 53 54 | syl2anc | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) |
| 56 | uncom | ⊢ ( { 𝐴 } ∪ 𝑋 ) = ( 𝑋 ∪ { 𝐴 } ) | |
| 57 | 56 | difeq1i | ⊢ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) = ( ( 𝑋 ∪ { 𝐴 } ) ∖ { 𝐴 } ) |
| 58 | difun2 | ⊢ ( ( 𝑋 ∪ { 𝐴 } ) ∖ { 𝐴 } ) = ( 𝑋 ∖ { 𝐴 } ) | |
| 59 | 57 58 | eqtri | ⊢ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) = ( 𝑋 ∖ { 𝐴 } ) |
| 60 | difsn | ⊢ ( ¬ 𝐴 ∈ 𝑋 → ( 𝑋 ∖ { 𝐴 } ) = 𝑋 ) | |
| 61 | 59 60 | eqtrid | ⊢ ( ¬ 𝐴 ∈ 𝑋 → ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) = 𝑋 ) |
| 62 | 61 | ad2antrr | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) = 𝑋 ) |
| 63 | uncom | ⊢ ( { 𝐵 } ∪ 𝑌 ) = ( 𝑌 ∪ { 𝐵 } ) | |
| 64 | 63 | difeq1i | ⊢ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) = ( ( 𝑌 ∪ { 𝐵 } ) ∖ { 𝐵 } ) |
| 65 | difun2 | ⊢ ( ( 𝑌 ∪ { 𝐵 } ) ∖ { 𝐵 } ) = ( 𝑌 ∖ { 𝐵 } ) | |
| 66 | 64 65 | eqtri | ⊢ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) = ( 𝑌 ∖ { 𝐵 } ) |
| 67 | difsn | ⊢ ( ¬ 𝐵 ∈ 𝑌 → ( 𝑌 ∖ { 𝐵 } ) = 𝑌 ) | |
| 68 | 66 67 | eqtrid | ⊢ ( ¬ 𝐵 ∈ 𝑌 → ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) = 𝑌 ) |
| 69 | 68 | ad2antlr | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) = 𝑌 ) |
| 70 | 55 62 69 | 3brtr3d | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → 𝑋 ≼ 𝑌 ) |
| 71 | 70 | expr | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ 𝑌 ∈ V ) → ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) → 𝑋 ≼ 𝑌 ) ) |
| 72 | 71 | exlimdv | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ 𝑌 ∈ V ) → ( ∃ 𝑓 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) → 𝑋 ≼ 𝑌 ) ) |
| 73 | 9 72 | syl5 | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ 𝑌 ∈ V ) → ( ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) → 𝑋 ≼ 𝑌 ) ) |
| 74 | 73 | impancom | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ) → ( 𝑌 ∈ V → 𝑋 ≼ 𝑌 ) ) |
| 75 | 8 74 | mpd | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ) → 𝑋 ≼ 𝑌 ) |
| 76 | en2sn | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → { 𝐴 } ≈ { 𝐵 } ) | |
| 77 | 1 2 76 | mp2an | ⊢ { 𝐴 } ≈ { 𝐵 } |
| 78 | endom | ⊢ ( { 𝐴 } ≈ { 𝐵 } → { 𝐴 } ≼ { 𝐵 } ) | |
| 79 | 77 78 | mp1i | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ 𝑋 ≼ 𝑌 ) → { 𝐴 } ≼ { 𝐵 } ) |
| 80 | simpr | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ 𝑋 ≼ 𝑌 ) → 𝑋 ≼ 𝑌 ) | |
| 81 | incom | ⊢ ( { 𝐵 } ∩ 𝑌 ) = ( 𝑌 ∩ { 𝐵 } ) | |
| 82 | disjsn | ⊢ ( ( 𝑌 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝑌 ) | |
| 83 | 82 | biimpri | ⊢ ( ¬ 𝐵 ∈ 𝑌 → ( 𝑌 ∩ { 𝐵 } ) = ∅ ) |
| 84 | 81 83 | eqtrid | ⊢ ( ¬ 𝐵 ∈ 𝑌 → ( { 𝐵 } ∩ 𝑌 ) = ∅ ) |
| 85 | 84 | ad2antlr | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ 𝑋 ≼ 𝑌 ) → ( { 𝐵 } ∩ 𝑌 ) = ∅ ) |
| 86 | undom | ⊢ ( ( ( { 𝐴 } ≼ { 𝐵 } ∧ 𝑋 ≼ 𝑌 ) ∧ ( { 𝐵 } ∩ 𝑌 ) = ∅ ) → ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ) | |
| 87 | 79 80 85 86 | syl21anc | ⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ 𝑋 ≼ 𝑌 ) → ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ) |
| 88 | 75 87 | impbida | ⊢ ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) → ( ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |