This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the recursive function generator when I is a set. (Contributed by Scott Fenton, 26-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrdg2 | ⊢ ( 𝐼 ∈ 𝑉 → rec ( 𝐹 , 𝐼 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgeq2 | ⊢ ( 𝑖 = 𝐼 → rec ( 𝐹 , 𝑖 ) = rec ( 𝐹 , 𝐼 ) ) | |
| 2 | ifeq1 | ⊢ ( 𝑖 = 𝐼 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) | |
| 3 | 2 | eqeq2d | ⊢ ( 𝑖 = 𝐼 → ( ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 4 | 3 | ralbidv | ⊢ ( 𝑖 = 𝐼 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 5 | 4 | anbi2d | ⊢ ( 𝑖 = 𝐼 → ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 6 | 5 | rexbidv | ⊢ ( 𝑖 = 𝐼 → ( ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 7 | 6 | abbidv | ⊢ ( 𝑖 = 𝐼 → { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) |
| 8 | 7 | unieqd | ⊢ ( 𝑖 = 𝐼 → ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) |
| 9 | 1 8 | eqeq12d | ⊢ ( 𝑖 = 𝐼 → ( rec ( 𝐹 , 𝑖 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ↔ rec ( 𝐹 , 𝐼 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) ) |
| 10 | df-rdg | ⊢ rec ( 𝐹 , 𝑖 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) | |
| 11 | dfrecs3 | ⊢ recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ) } | |
| 12 | vex | ⊢ 𝑓 ∈ V | |
| 13 | 12 | resex | ⊢ ( 𝑓 ↾ 𝑦 ) ∈ V |
| 14 | eqeq1 | ⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ( 𝑔 = ∅ ↔ ( 𝑓 ↾ 𝑦 ) = ∅ ) ) | |
| 15 | relres | ⊢ Rel ( 𝑓 ↾ 𝑦 ) | |
| 16 | reldm0 | ⊢ ( Rel ( 𝑓 ↾ 𝑦 ) → ( ( 𝑓 ↾ 𝑦 ) = ∅ ↔ dom ( 𝑓 ↾ 𝑦 ) = ∅ ) ) | |
| 17 | 15 16 | ax-mp | ⊢ ( ( 𝑓 ↾ 𝑦 ) = ∅ ↔ dom ( 𝑓 ↾ 𝑦 ) = ∅ ) |
| 18 | 14 17 | bitrdi | ⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ( 𝑔 = ∅ ↔ dom ( 𝑓 ↾ 𝑦 ) = ∅ ) ) |
| 19 | dmeq | ⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → dom 𝑔 = dom ( 𝑓 ↾ 𝑦 ) ) | |
| 20 | limeq | ⊢ ( dom 𝑔 = dom ( 𝑓 ↾ 𝑦 ) → ( Lim dom 𝑔 ↔ Lim dom ( 𝑓 ↾ 𝑦 ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ( Lim dom 𝑔 ↔ Lim dom ( 𝑓 ↾ 𝑦 ) ) ) |
| 22 | rneq | ⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ran 𝑔 = ran ( 𝑓 ↾ 𝑦 ) ) | |
| 23 | df-ima | ⊢ ( 𝑓 “ 𝑦 ) = ran ( 𝑓 ↾ 𝑦 ) | |
| 24 | 22 23 | eqtr4di | ⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ran 𝑔 = ( 𝑓 “ 𝑦 ) ) |
| 25 | 24 | unieqd | ⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ∪ ran 𝑔 = ∪ ( 𝑓 “ 𝑦 ) ) |
| 26 | id | ⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → 𝑔 = ( 𝑓 ↾ 𝑦 ) ) | |
| 27 | 19 | unieqd | ⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ∪ dom 𝑔 = ∪ dom ( 𝑓 ↾ 𝑦 ) ) |
| 28 | 26 27 | fveq12d | ⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ( 𝑔 ‘ ∪ dom 𝑔 ) = ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) |
| 29 | 28 | fveq2d | ⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) = ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) |
| 30 | 21 25 29 | ifbieq12d | ⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) = if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) |
| 31 | 18 30 | ifbieq2d | ⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) = if ( dom ( 𝑓 ↾ 𝑦 ) = ∅ , 𝑖 , if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) ) |
| 32 | eqid | ⊢ ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) = ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) | |
| 33 | vex | ⊢ 𝑖 ∈ V | |
| 34 | imaexg | ⊢ ( 𝑓 ∈ V → ( 𝑓 “ 𝑦 ) ∈ V ) | |
| 35 | 12 34 | ax-mp | ⊢ ( 𝑓 “ 𝑦 ) ∈ V |
| 36 | 35 | uniex | ⊢ ∪ ( 𝑓 “ 𝑦 ) ∈ V |
| 37 | fvex | ⊢ ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ∈ V | |
| 38 | 36 37 | ifex | ⊢ if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ∈ V |
| 39 | 33 38 | ifex | ⊢ if ( dom ( 𝑓 ↾ 𝑦 ) = ∅ , 𝑖 , if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) ∈ V |
| 40 | 31 32 39 | fvmpt | ⊢ ( ( 𝑓 ↾ 𝑦 ) ∈ V → ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) = if ( dom ( 𝑓 ↾ 𝑦 ) = ∅ , 𝑖 , if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) ) |
| 41 | 13 40 | ax-mp | ⊢ ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) = if ( dom ( 𝑓 ↾ 𝑦 ) = ∅ , 𝑖 , if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) |
| 42 | dmres | ⊢ dom ( 𝑓 ↾ 𝑦 ) = ( 𝑦 ∩ dom 𝑓 ) | |
| 43 | onelss | ⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥 ) ) | |
| 44 | 43 | imp | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ⊆ 𝑥 ) |
| 45 | 44 | 3adant2 | ⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ⊆ 𝑥 ) |
| 46 | fndm | ⊢ ( 𝑓 Fn 𝑥 → dom 𝑓 = 𝑥 ) | |
| 47 | 46 | 3ad2ant2 | ⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → dom 𝑓 = 𝑥 ) |
| 48 | 45 47 | sseqtrrd | ⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ⊆ dom 𝑓 ) |
| 49 | dfss2 | ⊢ ( 𝑦 ⊆ dom 𝑓 ↔ ( 𝑦 ∩ dom 𝑓 ) = 𝑦 ) | |
| 50 | 48 49 | sylib | ⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∩ dom 𝑓 ) = 𝑦 ) |
| 51 | 42 50 | eqtrid | ⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → dom ( 𝑓 ↾ 𝑦 ) = 𝑦 ) |
| 52 | eqeq1 | ⊢ ( dom ( 𝑓 ↾ 𝑦 ) = 𝑦 → ( dom ( 𝑓 ↾ 𝑦 ) = ∅ ↔ 𝑦 = ∅ ) ) | |
| 53 | limeq | ⊢ ( dom ( 𝑓 ↾ 𝑦 ) = 𝑦 → ( Lim dom ( 𝑓 ↾ 𝑦 ) ↔ Lim 𝑦 ) ) | |
| 54 | unieq | ⊢ ( dom ( 𝑓 ↾ 𝑦 ) = 𝑦 → ∪ dom ( 𝑓 ↾ 𝑦 ) = ∪ 𝑦 ) | |
| 55 | 54 | fveq2d | ⊢ ( dom ( 𝑓 ↾ 𝑦 ) = 𝑦 → ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) = ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) |
| 56 | 55 | fveq2d | ⊢ ( dom ( 𝑓 ↾ 𝑦 ) = 𝑦 → ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) = ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) |
| 57 | 53 56 | ifbieq2d | ⊢ ( dom ( 𝑓 ↾ 𝑦 ) = 𝑦 → if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) = if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) |
| 58 | 52 57 | ifbieq2d | ⊢ ( dom ( 𝑓 ↾ 𝑦 ) = 𝑦 → if ( dom ( 𝑓 ↾ 𝑦 ) = ∅ , 𝑖 , if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) ) |
| 59 | onelon | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) | |
| 60 | eloni | ⊢ ( 𝑦 ∈ On → Ord 𝑦 ) | |
| 61 | 59 60 | syl | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → Ord 𝑦 ) |
| 62 | 61 | 3adant2 | ⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → Ord 𝑦 ) |
| 63 | ordzsl | ⊢ ( Ord 𝑦 ↔ ( 𝑦 = ∅ ∨ ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 ∨ Lim 𝑦 ) ) | |
| 64 | iftrue | ⊢ ( 𝑦 = ∅ → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = 𝑖 ) | |
| 65 | iftrue | ⊢ ( 𝑦 = ∅ → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = 𝑖 ) | |
| 66 | 64 65 | eqtr4d | ⊢ ( 𝑦 = ∅ → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 67 | vex | ⊢ 𝑧 ∈ V | |
| 68 | 67 | sucid | ⊢ 𝑧 ∈ suc 𝑧 |
| 69 | fvres | ⊢ ( 𝑧 ∈ suc 𝑧 → ( ( 𝑓 ↾ suc 𝑧 ) ‘ 𝑧 ) = ( 𝑓 ‘ 𝑧 ) ) | |
| 70 | 68 69 | ax-mp | ⊢ ( ( 𝑓 ↾ suc 𝑧 ) ‘ 𝑧 ) = ( 𝑓 ‘ 𝑧 ) |
| 71 | eloni | ⊢ ( 𝑧 ∈ On → Ord 𝑧 ) | |
| 72 | ordunisuc | ⊢ ( Ord 𝑧 → ∪ suc 𝑧 = 𝑧 ) | |
| 73 | 71 72 | syl | ⊢ ( 𝑧 ∈ On → ∪ suc 𝑧 = 𝑧 ) |
| 74 | 73 | fveq2d | ⊢ ( 𝑧 ∈ On → ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) = ( ( 𝑓 ↾ suc 𝑧 ) ‘ 𝑧 ) ) |
| 75 | 73 | fveq2d | ⊢ ( 𝑧 ∈ On → ( 𝑓 ‘ ∪ suc 𝑧 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 76 | 70 74 75 | 3eqtr4a | ⊢ ( 𝑧 ∈ On → ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) = ( 𝑓 ‘ ∪ suc 𝑧 ) ) |
| 77 | 76 | fveq2d | ⊢ ( 𝑧 ∈ On → ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) |
| 78 | nsuceq0 | ⊢ suc 𝑧 ≠ ∅ | |
| 79 | 78 | neii | ⊢ ¬ suc 𝑧 = ∅ |
| 80 | 79 | iffalsei | ⊢ if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) ) = if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) |
| 81 | nlimsucg | ⊢ ( 𝑧 ∈ V → ¬ Lim suc 𝑧 ) | |
| 82 | iffalse | ⊢ ( ¬ Lim suc 𝑧 → if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) | |
| 83 | 67 81 82 | mp2b | ⊢ if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) |
| 84 | 80 83 | eqtri | ⊢ if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) ) = ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) |
| 85 | 79 | iffalsei | ⊢ if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) = if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) |
| 86 | iffalse | ⊢ ( ¬ Lim suc 𝑧 → if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) | |
| 87 | 67 81 86 | mp2b | ⊢ if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) |
| 88 | 85 87 | eqtri | ⊢ if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) |
| 89 | 77 84 88 | 3eqtr4g | ⊢ ( 𝑧 ∈ On → if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) ) = if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) ) |
| 90 | eqeq1 | ⊢ ( 𝑦 = suc 𝑧 → ( 𝑦 = ∅ ↔ suc 𝑧 = ∅ ) ) | |
| 91 | limeq | ⊢ ( 𝑦 = suc 𝑧 → ( Lim 𝑦 ↔ Lim suc 𝑧 ) ) | |
| 92 | reseq2 | ⊢ ( 𝑦 = suc 𝑧 → ( 𝑓 ↾ 𝑦 ) = ( 𝑓 ↾ suc 𝑧 ) ) | |
| 93 | unieq | ⊢ ( 𝑦 = suc 𝑧 → ∪ 𝑦 = ∪ suc 𝑧 ) | |
| 94 | 92 93 | fveq12d | ⊢ ( 𝑦 = suc 𝑧 → ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) = ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) |
| 95 | 94 | fveq2d | ⊢ ( 𝑦 = suc 𝑧 → ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) = ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) |
| 96 | 91 95 | ifbieq2d | ⊢ ( 𝑦 = suc 𝑧 → if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) = if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) ) |
| 97 | 90 96 | ifbieq2d | ⊢ ( 𝑦 = suc 𝑧 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) ) ) |
| 98 | 93 | fveq2d | ⊢ ( 𝑦 = suc 𝑧 → ( 𝑓 ‘ ∪ 𝑦 ) = ( 𝑓 ‘ ∪ suc 𝑧 ) ) |
| 99 | 98 | fveq2d | ⊢ ( 𝑦 = suc 𝑧 → ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) |
| 100 | 91 99 | ifbieq2d | ⊢ ( 𝑦 = suc 𝑧 → if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) = if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) |
| 101 | 90 100 | ifbieq2d | ⊢ ( 𝑦 = suc 𝑧 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) ) |
| 102 | 97 101 | eqeq12d | ⊢ ( 𝑦 = suc 𝑧 → ( if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) ) = if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) ) ) |
| 103 | 89 102 | syl5ibrcom | ⊢ ( 𝑧 ∈ On → ( 𝑦 = suc 𝑧 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 104 | 103 | rexlimiv | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 105 | iftrue | ⊢ ( Lim 𝑦 → if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) = ∪ ( 𝑓 “ 𝑦 ) ) | |
| 106 | df-lim | ⊢ ( Lim 𝑦 ↔ ( Ord 𝑦 ∧ 𝑦 ≠ ∅ ∧ 𝑦 = ∪ 𝑦 ) ) | |
| 107 | 106 | simp2bi | ⊢ ( Lim 𝑦 → 𝑦 ≠ ∅ ) |
| 108 | 107 | neneqd | ⊢ ( Lim 𝑦 → ¬ 𝑦 = ∅ ) |
| 109 | 108 | iffalsed | ⊢ ( Lim 𝑦 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) |
| 110 | iftrue | ⊢ ( Lim 𝑦 → if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) = ∪ ( 𝑓 “ 𝑦 ) ) | |
| 111 | 105 109 110 | 3eqtr4d | ⊢ ( Lim 𝑦 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) |
| 112 | 108 | iffalsed | ⊢ ( Lim 𝑦 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) |
| 113 | 111 112 | eqtr4d | ⊢ ( Lim 𝑦 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 114 | 66 104 113 | 3jaoi | ⊢ ( ( 𝑦 = ∅ ∨ ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 ∨ Lim 𝑦 ) → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 115 | 63 114 | sylbi | ⊢ ( Ord 𝑦 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 116 | 62 115 | syl | ⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 117 | 58 116 | sylan9eqr | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) ∧ dom ( 𝑓 ↾ 𝑦 ) = 𝑦 ) → if ( dom ( 𝑓 ↾ 𝑦 ) = ∅ , 𝑖 , if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 118 | 51 117 | mpdan | ⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → if ( dom ( 𝑓 ↾ 𝑦 ) = ∅ , 𝑖 , if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 119 | 41 118 | eqtrid | ⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 120 | 119 | eqeq2d | ⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ↔ ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 121 | 120 | 3expa | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ↔ ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 122 | 121 | ralbidva | ⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 123 | 122 | pm5.32da | ⊢ ( 𝑥 ∈ On → ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ) ↔ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 124 | 123 | rexbiia | ⊢ ( ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ) ↔ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 125 | 124 | abbii | ⊢ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } |
| 126 | 125 | unieqi | ⊢ ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ) } = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } |
| 127 | 10 11 126 | 3eqtri | ⊢ rec ( 𝐹 , 𝑖 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } |
| 128 | 9 127 | vtoclg | ⊢ ( 𝐼 ∈ 𝑉 → rec ( 𝐹 , 𝐼 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) |