This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfon2 . A class of new ordinals is well-founded by _E . (Contributed by Scott Fenton, 3-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfon2lem9 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → E Fr 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv | ⊢ ( 𝑧 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) ) | |
| 2 | dfon2lem8 | ⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ∧ ∩ 𝑧 ∈ 𝑧 ) ) | |
| 3 | 2 | simprd | ⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ∩ 𝑧 ∈ 𝑧 ) |
| 4 | intss1 | ⊢ ( 𝑡 ∈ 𝑧 → ∩ 𝑧 ⊆ 𝑡 ) | |
| 5 | 2 | simpld | ⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) |
| 6 | intex | ⊢ ( 𝑧 ≠ ∅ ↔ ∩ 𝑧 ∈ V ) | |
| 7 | dfon2lem3 | ⊢ ( ∩ 𝑧 ∈ V → ( ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) → ( Tr ∩ 𝑧 ∧ ∀ 𝑥 ∈ ∩ 𝑧 ¬ 𝑥 ∈ 𝑥 ) ) ) | |
| 8 | 7 | imp | ⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( Tr ∩ 𝑧 ∧ ∀ 𝑥 ∈ ∩ 𝑧 ¬ 𝑥 ∈ 𝑥 ) ) |
| 9 | 8 | simprd | ⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ∀ 𝑥 ∈ ∩ 𝑧 ¬ 𝑥 ∈ 𝑥 ) |
| 10 | untelirr | ⊢ ( ∀ 𝑥 ∈ ∩ 𝑧 ¬ 𝑥 ∈ 𝑥 → ¬ ∩ 𝑧 ∈ ∩ 𝑧 ) | |
| 11 | 9 10 | syl | ⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ¬ ∩ 𝑧 ∈ ∩ 𝑧 ) |
| 12 | eleq1 | ⊢ ( ∩ 𝑧 = 𝑡 → ( ∩ 𝑧 ∈ ∩ 𝑧 ↔ 𝑡 ∈ ∩ 𝑧 ) ) | |
| 13 | 12 | notbid | ⊢ ( ∩ 𝑧 = 𝑡 → ( ¬ ∩ 𝑧 ∈ ∩ 𝑧 ↔ ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
| 14 | 11 13 | syl5ibcom | ⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( ∩ 𝑧 = 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
| 15 | 14 | a1dd | ⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( ∩ 𝑧 = 𝑡 → ( ∩ 𝑧 ⊆ 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) ) |
| 16 | 8 | simpld | ⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → Tr ∩ 𝑧 ) |
| 17 | trss | ⊢ ( Tr ∩ 𝑧 → ( 𝑡 ∈ ∩ 𝑧 → 𝑡 ⊆ ∩ 𝑧 ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( 𝑡 ∈ ∩ 𝑧 → 𝑡 ⊆ ∩ 𝑧 ) ) |
| 19 | eqss | ⊢ ( ∩ 𝑧 = 𝑡 ↔ ( ∩ 𝑧 ⊆ 𝑡 ∧ 𝑡 ⊆ ∩ 𝑧 ) ) | |
| 20 | 19 | simplbi2com | ⊢ ( 𝑡 ⊆ ∩ 𝑧 → ( ∩ 𝑧 ⊆ 𝑡 → ∩ 𝑧 = 𝑡 ) ) |
| 21 | 18 20 | syl6 | ⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( 𝑡 ∈ ∩ 𝑧 → ( ∩ 𝑧 ⊆ 𝑡 → ∩ 𝑧 = 𝑡 ) ) ) |
| 22 | 21 | com23 | ⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( ∩ 𝑧 ⊆ 𝑡 → ( 𝑡 ∈ ∩ 𝑧 → ∩ 𝑧 = 𝑡 ) ) ) |
| 23 | con3 | ⊢ ( ( 𝑡 ∈ ∩ 𝑧 → ∩ 𝑧 = 𝑡 ) → ( ¬ ∩ 𝑧 = 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) | |
| 24 | 22 23 | syl6 | ⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( ∩ 𝑧 ⊆ 𝑡 → ( ¬ ∩ 𝑧 = 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) ) |
| 25 | 24 | com23 | ⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( ¬ ∩ 𝑧 = 𝑡 → ( ∩ 𝑧 ⊆ 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) ) |
| 26 | 15 25 | pm2.61d | ⊢ ( ( ∩ 𝑧 ∈ V ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( ∩ 𝑧 ⊆ 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
| 27 | 6 26 | sylanb | ⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑢 ( ( 𝑢 ⊊ ∩ 𝑧 ∧ Tr 𝑢 ) → 𝑢 ∈ ∩ 𝑧 ) ) → ( ∩ 𝑧 ⊆ 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
| 28 | 5 27 | syldan | ⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( ∩ 𝑧 ⊆ 𝑡 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
| 29 | 4 28 | syl5 | ⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ( 𝑡 ∈ 𝑧 → ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
| 30 | 29 | ralrimiv | ⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ ∩ 𝑧 ) |
| 31 | eleq2 | ⊢ ( 𝑤 = ∩ 𝑧 → ( 𝑡 ∈ 𝑤 ↔ 𝑡 ∈ ∩ 𝑧 ) ) | |
| 32 | 31 | notbid | ⊢ ( 𝑤 = ∩ 𝑧 → ( ¬ 𝑡 ∈ 𝑤 ↔ ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
| 33 | 32 | ralbidv | ⊢ ( 𝑤 = ∩ 𝑧 → ( ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ↔ ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ ∩ 𝑧 ) ) |
| 34 | 33 | rspcev | ⊢ ( ( ∩ 𝑧 ∈ 𝑧 ∧ ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ ∩ 𝑧 ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) |
| 35 | 3 30 34 | syl2anc | ⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) |
| 36 | 35 | expcom | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( 𝑧 ≠ ∅ → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) ) |
| 37 | 1 36 | syl6com | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( 𝑧 ⊆ 𝐴 → ( 𝑧 ≠ ∅ → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) ) ) |
| 38 | 37 | impd | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) ) |
| 39 | 38 | alrimiv | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) ) |
| 40 | df-fr | ⊢ ( E Fr 𝐴 ↔ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 E 𝑤 ) ) | |
| 41 | epel | ⊢ ( 𝑡 E 𝑤 ↔ 𝑡 ∈ 𝑤 ) | |
| 42 | 41 | notbii | ⊢ ( ¬ 𝑡 E 𝑤 ↔ ¬ 𝑡 ∈ 𝑤 ) |
| 43 | 42 | ralbii | ⊢ ( ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 E 𝑤 ↔ ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) |
| 44 | 43 | rexbii | ⊢ ( ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 E 𝑤 ↔ ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) |
| 45 | 44 | imbi2i | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 E 𝑤 ) ↔ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) ) |
| 46 | 45 | albii | ⊢ ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 E 𝑤 ) ↔ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) ) |
| 47 | 40 46 | bitri | ⊢ ( E Fr 𝐴 ↔ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∀ 𝑡 ∈ 𝑧 ¬ 𝑡 ∈ 𝑤 ) ) |
| 48 | 39 47 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) → E Fr 𝐴 ) |