This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: On consists of all sets that contain all its transitive proper subsets. This definition comes from J. R. Isbell, "A Definition of Ordinal Numbers", American Mathematical Monthly, vol 67 (1960), pp. 51-52. (Contributed by Scott Fenton, 20-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfon2 | |- On = { x | A. y ( ( y C. x /\ Tr y ) -> y e. x ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-on | |- On = { x | Ord x } |
|
| 2 | tz7.7 | |- ( ( Ord x /\ Tr y ) -> ( y e. x <-> ( y C_ x /\ y =/= x ) ) ) |
|
| 3 | df-pss | |- ( y C. x <-> ( y C_ x /\ y =/= x ) ) |
|
| 4 | 2 3 | bitr4di | |- ( ( Ord x /\ Tr y ) -> ( y e. x <-> y C. x ) ) |
| 5 | 4 | exbiri | |- ( Ord x -> ( Tr y -> ( y C. x -> y e. x ) ) ) |
| 6 | 5 | com23 | |- ( Ord x -> ( y C. x -> ( Tr y -> y e. x ) ) ) |
| 7 | 6 | impd | |- ( Ord x -> ( ( y C. x /\ Tr y ) -> y e. x ) ) |
| 8 | 7 | alrimiv | |- ( Ord x -> A. y ( ( y C. x /\ Tr y ) -> y e. x ) ) |
| 9 | vex | |- x e. _V |
|
| 10 | dfon2lem3 | |- ( x e. _V -> ( A. y ( ( y C. x /\ Tr y ) -> y e. x ) -> ( Tr x /\ A. z e. x -. z e. z ) ) ) |
|
| 11 | 9 10 | ax-mp | |- ( A. y ( ( y C. x /\ Tr y ) -> y e. x ) -> ( Tr x /\ A. z e. x -. z e. z ) ) |
| 12 | 11 | simpld | |- ( A. y ( ( y C. x /\ Tr y ) -> y e. x ) -> Tr x ) |
| 13 | 9 | dfon2lem7 | |- ( A. y ( ( y C. x /\ Tr y ) -> y e. x ) -> ( t e. x -> A. u ( ( u C. t /\ Tr u ) -> u e. t ) ) ) |
| 14 | 13 | ralrimiv | |- ( A. y ( ( y C. x /\ Tr y ) -> y e. x ) -> A. t e. x A. u ( ( u C. t /\ Tr u ) -> u e. t ) ) |
| 15 | dfon2lem9 | |- ( A. t e. x A. u ( ( u C. t /\ Tr u ) -> u e. t ) -> _E Fr x ) |
|
| 16 | psseq2 | |- ( t = z -> ( u C. t <-> u C. z ) ) |
|
| 17 | 16 | anbi1d | |- ( t = z -> ( ( u C. t /\ Tr u ) <-> ( u C. z /\ Tr u ) ) ) |
| 18 | elequ2 | |- ( t = z -> ( u e. t <-> u e. z ) ) |
|
| 19 | 17 18 | imbi12d | |- ( t = z -> ( ( ( u C. t /\ Tr u ) -> u e. t ) <-> ( ( u C. z /\ Tr u ) -> u e. z ) ) ) |
| 20 | 19 | albidv | |- ( t = z -> ( A. u ( ( u C. t /\ Tr u ) -> u e. t ) <-> A. u ( ( u C. z /\ Tr u ) -> u e. z ) ) ) |
| 21 | psseq1 | |- ( u = v -> ( u C. z <-> v C. z ) ) |
|
| 22 | treq | |- ( u = v -> ( Tr u <-> Tr v ) ) |
|
| 23 | 21 22 | anbi12d | |- ( u = v -> ( ( u C. z /\ Tr u ) <-> ( v C. z /\ Tr v ) ) ) |
| 24 | elequ1 | |- ( u = v -> ( u e. z <-> v e. z ) ) |
|
| 25 | 23 24 | imbi12d | |- ( u = v -> ( ( ( u C. z /\ Tr u ) -> u e. z ) <-> ( ( v C. z /\ Tr v ) -> v e. z ) ) ) |
| 26 | 25 | cbvalvw | |- ( A. u ( ( u C. z /\ Tr u ) -> u e. z ) <-> A. v ( ( v C. z /\ Tr v ) -> v e. z ) ) |
| 27 | 20 26 | bitrdi | |- ( t = z -> ( A. u ( ( u C. t /\ Tr u ) -> u e. t ) <-> A. v ( ( v C. z /\ Tr v ) -> v e. z ) ) ) |
| 28 | 27 | rspccv | |- ( A. t e. x A. u ( ( u C. t /\ Tr u ) -> u e. t ) -> ( z e. x -> A. v ( ( v C. z /\ Tr v ) -> v e. z ) ) ) |
| 29 | psseq2 | |- ( t = w -> ( u C. t <-> u C. w ) ) |
|
| 30 | 29 | anbi1d | |- ( t = w -> ( ( u C. t /\ Tr u ) <-> ( u C. w /\ Tr u ) ) ) |
| 31 | elequ2 | |- ( t = w -> ( u e. t <-> u e. w ) ) |
|
| 32 | 30 31 | imbi12d | |- ( t = w -> ( ( ( u C. t /\ Tr u ) -> u e. t ) <-> ( ( u C. w /\ Tr u ) -> u e. w ) ) ) |
| 33 | 32 | albidv | |- ( t = w -> ( A. u ( ( u C. t /\ Tr u ) -> u e. t ) <-> A. u ( ( u C. w /\ Tr u ) -> u e. w ) ) ) |
| 34 | psseq1 | |- ( u = y -> ( u C. w <-> y C. w ) ) |
|
| 35 | treq | |- ( u = y -> ( Tr u <-> Tr y ) ) |
|
| 36 | 34 35 | anbi12d | |- ( u = y -> ( ( u C. w /\ Tr u ) <-> ( y C. w /\ Tr y ) ) ) |
| 37 | elequ1 | |- ( u = y -> ( u e. w <-> y e. w ) ) |
|
| 38 | 36 37 | imbi12d | |- ( u = y -> ( ( ( u C. w /\ Tr u ) -> u e. w ) <-> ( ( y C. w /\ Tr y ) -> y e. w ) ) ) |
| 39 | 38 | cbvalvw | |- ( A. u ( ( u C. w /\ Tr u ) -> u e. w ) <-> A. y ( ( y C. w /\ Tr y ) -> y e. w ) ) |
| 40 | 33 39 | bitrdi | |- ( t = w -> ( A. u ( ( u C. t /\ Tr u ) -> u e. t ) <-> A. y ( ( y C. w /\ Tr y ) -> y e. w ) ) ) |
| 41 | 40 | rspccv | |- ( A. t e. x A. u ( ( u C. t /\ Tr u ) -> u e. t ) -> ( w e. x -> A. y ( ( y C. w /\ Tr y ) -> y e. w ) ) ) |
| 42 | 28 41 | anim12d | |- ( A. t e. x A. u ( ( u C. t /\ Tr u ) -> u e. t ) -> ( ( z e. x /\ w e. x ) -> ( A. v ( ( v C. z /\ Tr v ) -> v e. z ) /\ A. y ( ( y C. w /\ Tr y ) -> y e. w ) ) ) ) |
| 43 | vex | |- z e. _V |
|
| 44 | vex | |- w e. _V |
|
| 45 | 43 44 | dfon2lem5 | |- ( ( A. v ( ( v C. z /\ Tr v ) -> v e. z ) /\ A. y ( ( y C. w /\ Tr y ) -> y e. w ) ) -> ( z e. w \/ z = w \/ w e. z ) ) |
| 46 | 42 45 | syl6 | |- ( A. t e. x A. u ( ( u C. t /\ Tr u ) -> u e. t ) -> ( ( z e. x /\ w e. x ) -> ( z e. w \/ z = w \/ w e. z ) ) ) |
| 47 | 46 | ralrimivv | |- ( A. t e. x A. u ( ( u C. t /\ Tr u ) -> u e. t ) -> A. z e. x A. w e. x ( z e. w \/ z = w \/ w e. z ) ) |
| 48 | 15 47 | jca | |- ( A. t e. x A. u ( ( u C. t /\ Tr u ) -> u e. t ) -> ( _E Fr x /\ A. z e. x A. w e. x ( z e. w \/ z = w \/ w e. z ) ) ) |
| 49 | 14 48 | syl | |- ( A. y ( ( y C. x /\ Tr y ) -> y e. x ) -> ( _E Fr x /\ A. z e. x A. w e. x ( z e. w \/ z = w \/ w e. z ) ) ) |
| 50 | dfwe2 | |- ( _E We x <-> ( _E Fr x /\ A. z e. x A. w e. x ( z _E w \/ z = w \/ w _E z ) ) ) |
|
| 51 | epel | |- ( z _E w <-> z e. w ) |
|
| 52 | biid | |- ( z = w <-> z = w ) |
|
| 53 | epel | |- ( w _E z <-> w e. z ) |
|
| 54 | 51 52 53 | 3orbi123i | |- ( ( z _E w \/ z = w \/ w _E z ) <-> ( z e. w \/ z = w \/ w e. z ) ) |
| 55 | 54 | 2ralbii | |- ( A. z e. x A. w e. x ( z _E w \/ z = w \/ w _E z ) <-> A. z e. x A. w e. x ( z e. w \/ z = w \/ w e. z ) ) |
| 56 | 55 | anbi2i | |- ( ( _E Fr x /\ A. z e. x A. w e. x ( z _E w \/ z = w \/ w _E z ) ) <-> ( _E Fr x /\ A. z e. x A. w e. x ( z e. w \/ z = w \/ w e. z ) ) ) |
| 57 | 50 56 | bitri | |- ( _E We x <-> ( _E Fr x /\ A. z e. x A. w e. x ( z e. w \/ z = w \/ w e. z ) ) ) |
| 58 | 49 57 | sylibr | |- ( A. y ( ( y C. x /\ Tr y ) -> y e. x ) -> _E We x ) |
| 59 | df-ord | |- ( Ord x <-> ( Tr x /\ _E We x ) ) |
|
| 60 | 12 58 59 | sylanbrc | |- ( A. y ( ( y C. x /\ Tr y ) -> y e. x ) -> Ord x ) |
| 61 | 8 60 | impbii | |- ( Ord x <-> A. y ( ( y C. x /\ Tr y ) -> y e. x ) ) |
| 62 | 61 | abbii | |- { x | Ord x } = { x | A. y ( ( y C. x /\ Tr y ) -> y e. x ) } |
| 63 | 1 62 | eqtri | |- On = { x | A. y ( ( y C. x /\ Tr y ) -> y e. x ) } |