This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the recursive definition generator at (/) when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdgprc0 | ⊢ ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ ∅ ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon | ⊢ ∅ ∈ On | |
| 2 | rdgval | ⊢ ( ∅ ∈ On → ( rec ( 𝐹 , 𝐼 ) ‘ ∅ ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐼 ) ↾ ∅ ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( rec ( 𝐹 , 𝐼 ) ‘ ∅ ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐼 ) ↾ ∅ ) ) |
| 4 | res0 | ⊢ ( rec ( 𝐹 , 𝐼 ) ↾ ∅ ) = ∅ | |
| 5 | 4 | fveq2i | ⊢ ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐼 ) ↾ ∅ ) ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ∅ ) |
| 6 | 3 5 | eqtri | ⊢ ( rec ( 𝐹 , 𝐼 ) ‘ ∅ ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ∅ ) |
| 7 | eqeq1 | ⊢ ( 𝑔 = ∅ → ( 𝑔 = ∅ ↔ ∅ = ∅ ) ) | |
| 8 | dmeq | ⊢ ( 𝑔 = ∅ → dom 𝑔 = dom ∅ ) | |
| 9 | limeq | ⊢ ( dom 𝑔 = dom ∅ → ( Lim dom 𝑔 ↔ Lim dom ∅ ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑔 = ∅ → ( Lim dom 𝑔 ↔ Lim dom ∅ ) ) |
| 11 | rneq | ⊢ ( 𝑔 = ∅ → ran 𝑔 = ran ∅ ) | |
| 12 | 11 | unieqd | ⊢ ( 𝑔 = ∅ → ∪ ran 𝑔 = ∪ ran ∅ ) |
| 13 | id | ⊢ ( 𝑔 = ∅ → 𝑔 = ∅ ) | |
| 14 | 8 | unieqd | ⊢ ( 𝑔 = ∅ → ∪ dom 𝑔 = ∪ dom ∅ ) |
| 15 | 13 14 | fveq12d | ⊢ ( 𝑔 = ∅ → ( 𝑔 ‘ ∪ dom 𝑔 ) = ( ∅ ‘ ∪ dom ∅ ) ) |
| 16 | 15 | fveq2d | ⊢ ( 𝑔 = ∅ → ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) = ( 𝐹 ‘ ( ∅ ‘ ∪ dom ∅ ) ) ) |
| 17 | 10 12 16 | ifbieq12d | ⊢ ( 𝑔 = ∅ → if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) = if ( Lim dom ∅ , ∪ ran ∅ , ( 𝐹 ‘ ( ∅ ‘ ∪ dom ∅ ) ) ) ) |
| 18 | 7 17 | ifbieq2d | ⊢ ( 𝑔 = ∅ → if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) = if ( ∅ = ∅ , 𝐼 , if ( Lim dom ∅ , ∪ ran ∅ , ( 𝐹 ‘ ( ∅ ‘ ∪ dom ∅ ) ) ) ) ) |
| 19 | 18 | eleq1d | ⊢ ( 𝑔 = ∅ → ( if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ∈ V ↔ if ( ∅ = ∅ , 𝐼 , if ( Lim dom ∅ , ∪ ran ∅ , ( 𝐹 ‘ ( ∅ ‘ ∪ dom ∅ ) ) ) ) ∈ V ) ) |
| 20 | eqid | ⊢ ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) = ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) | |
| 21 | 20 | dmmpt | ⊢ dom ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) = { 𝑔 ∈ V ∣ if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ∈ V } |
| 22 | 19 21 | elrab2 | ⊢ ( ∅ ∈ dom ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ↔ ( ∅ ∈ V ∧ if ( ∅ = ∅ , 𝐼 , if ( Lim dom ∅ , ∪ ran ∅ , ( 𝐹 ‘ ( ∅ ‘ ∪ dom ∅ ) ) ) ) ∈ V ) ) |
| 23 | eqid | ⊢ ∅ = ∅ | |
| 24 | 23 | iftruei | ⊢ if ( ∅ = ∅ , 𝐼 , if ( Lim dom ∅ , ∪ ran ∅ , ( 𝐹 ‘ ( ∅ ‘ ∪ dom ∅ ) ) ) ) = 𝐼 |
| 25 | 24 | eleq1i | ⊢ ( if ( ∅ = ∅ , 𝐼 , if ( Lim dom ∅ , ∪ ran ∅ , ( 𝐹 ‘ ( ∅ ‘ ∪ dom ∅ ) ) ) ) ∈ V ↔ 𝐼 ∈ V ) |
| 26 | 25 | biimpi | ⊢ ( if ( ∅ = ∅ , 𝐼 , if ( Lim dom ∅ , ∪ ran ∅ , ( 𝐹 ‘ ( ∅ ‘ ∪ dom ∅ ) ) ) ) ∈ V → 𝐼 ∈ V ) |
| 27 | 22 26 | simplbiim | ⊢ ( ∅ ∈ dom ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) → 𝐼 ∈ V ) |
| 28 | ndmfv | ⊢ ( ¬ ∅ ∈ dom ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) → ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ∅ ) = ∅ ) | |
| 29 | 27 28 | nsyl5 | ⊢ ( ¬ 𝐼 ∈ V → ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐼 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ∅ ) = ∅ ) |
| 30 | 6 29 | eqtrid | ⊢ ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ ∅ ) = ∅ ) |