This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfon2 . Two sets satisfying the new definition also satisfy trichotomy with respect to e. . (Contributed by Scott Fenton, 25-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfon2lem5.1 | ⊢ 𝐴 ∈ V | |
| dfon2lem5.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | dfon2lem5 | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfon2lem5.1 | ⊢ 𝐴 ∈ V | |
| 2 | dfon2lem5.2 | ⊢ 𝐵 ∈ V | |
| 3 | 1 2 | dfon2lem4 | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 4 | dfpss2 | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ) | |
| 5 | dfpss2 | ⊢ ( 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ) | |
| 6 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 7 | 6 | notbii | ⊢ ( ¬ 𝐵 = 𝐴 ↔ ¬ 𝐴 = 𝐵 ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) |
| 9 | 5 8 | bitri | ⊢ ( 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) |
| 10 | 4 9 | orbi12i | ⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ↔ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) ) |
| 11 | andir | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ∧ ¬ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) ) | |
| 12 | 10 11 | bitr4i | ⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ↔ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ∧ ¬ 𝐴 = 𝐵 ) ) |
| 13 | orcom | ⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ↔ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 ⊊ 𝐵 ) ) | |
| 14 | dfon2lem3 | ⊢ ( 𝐵 ∈ V → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) → ( Tr 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 ∈ 𝑧 ) ) ) | |
| 15 | 2 14 | ax-mp | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) → ( Tr 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 ∈ 𝑧 ) ) |
| 16 | 15 | simpld | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) → Tr 𝐵 ) |
| 17 | psseq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ⊊ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) | |
| 18 | treq | ⊢ ( 𝑥 = 𝐵 → ( Tr 𝑥 ↔ Tr 𝐵 ) ) | |
| 19 | 17 18 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) ↔ ( 𝐵 ⊊ 𝐴 ∧ Tr 𝐵 ) ) ) |
| 20 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 21 | 19 20 | imbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ↔ ( ( 𝐵 ⊊ 𝐴 ∧ Tr 𝐵 ) → 𝐵 ∈ 𝐴 ) ) ) |
| 22 | 2 21 | spcv | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ⊊ 𝐴 ∧ Tr 𝐵 ) → 𝐵 ∈ 𝐴 ) ) |
| 23 | 22 | expcomd | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( Tr 𝐵 → ( 𝐵 ⊊ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) |
| 24 | 23 | imp | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ Tr 𝐵 ) → ( 𝐵 ⊊ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 25 | 16 24 | sylan2 | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( 𝐵 ⊊ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 26 | dfon2lem3 | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) ) | |
| 27 | 1 26 | ax-mp | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) |
| 28 | 27 | simpld | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → Tr 𝐴 ) |
| 29 | psseq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊊ 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) | |
| 30 | treq | ⊢ ( 𝑦 = 𝐴 → ( Tr 𝑦 ↔ Tr 𝐴 ) ) | |
| 31 | 29 30 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) ↔ ( 𝐴 ⊊ 𝐵 ∧ Tr 𝐴 ) ) ) |
| 32 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 33 | 31 32 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∧ Tr 𝐴 ) → 𝐴 ∈ 𝐵 ) ) ) |
| 34 | 1 33 | spcv | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) → ( ( 𝐴 ⊊ 𝐵 ∧ Tr 𝐴 ) → 𝐴 ∈ 𝐵 ) ) |
| 35 | 34 | expcomd | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) → ( Tr 𝐴 → ( 𝐴 ⊊ 𝐵 → 𝐴 ∈ 𝐵 ) ) ) |
| 36 | 28 35 | mpan9 | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( 𝐴 ⊊ 𝐵 → 𝐴 ∈ 𝐵 ) ) |
| 37 | 25 36 | orim12d | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ( 𝐵 ⊊ 𝐴 ∨ 𝐴 ⊊ 𝐵 ) → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) |
| 38 | 13 37 | biimtrid | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) |
| 39 | 12 38 | biimtrrid | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ∧ ¬ 𝐴 = 𝐵 ) → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) |
| 40 | 3 39 | mpand | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ¬ 𝐴 = 𝐵 → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) |
| 41 | 3orrot | ⊢ ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) | |
| 42 | 3orass | ⊢ ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ↔ ( 𝐴 = 𝐵 ∨ ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) | |
| 43 | df-or | ⊢ ( ( 𝐴 = 𝐵 ∨ ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ↔ ( ¬ 𝐴 = 𝐵 → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) | |
| 44 | 42 43 | bitri | ⊢ ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ↔ ( ¬ 𝐴 = 𝐵 → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) |
| 45 | 41 44 | bitri | ⊢ ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ( ¬ 𝐴 = 𝐵 → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ∈ 𝐵 ) ) ) |
| 46 | 40 45 | sylibr | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) |