This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transitive class belongs to an ordinal class iff it is strictly included in it. Proposition 7.7 of TakeutiZaring p. 37. (Contributed by NM, 5-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tz7.7 | ⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ∈ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr | ⊢ ( Ord 𝐴 → Tr 𝐴 ) | |
| 2 | ordfr | ⊢ ( Ord 𝐴 → E Fr 𝐴 ) | |
| 3 | tz7.2 | ⊢ ( ( Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) | |
| 4 | 3 | 3exp | ⊢ ( Tr 𝐴 → ( E Fr 𝐴 → ( 𝐵 ∈ 𝐴 → ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) ) ) |
| 5 | 1 2 4 | sylc | ⊢ ( Ord 𝐴 → ( 𝐵 ∈ 𝐴 → ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ∈ 𝐴 → ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) ) |
| 7 | pssdifn0 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) | |
| 8 | difss | ⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 | |
| 9 | tz7.5 | ⊢ ( ( Ord 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ ) | |
| 10 | 8 9 | mp3an2 | ⊢ ( ( Ord 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ ) |
| 11 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑥 ∈ 𝐴 ) | |
| 12 | trss | ⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴 ) ) | |
| 13 | difin0ss | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ → ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) | |
| 14 | 13 | com12 | ⊢ ( 𝑥 ⊆ 𝐴 → ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ → 𝑥 ⊆ 𝐵 ) ) |
| 15 | 11 12 14 | syl56 | ⊢ ( Tr 𝐴 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ → 𝑥 ⊆ 𝐵 ) ) ) |
| 16 | 1 15 | syl | ⊢ ( Ord 𝐴 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ → 𝑥 ⊆ 𝐵 ) ) ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ → 𝑥 ⊆ 𝐵 ) ) ) |
| 18 | 17 | imp32 | ⊢ ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝑥 ⊆ 𝐵 ) |
| 19 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 20 | 19 | biimpcd | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝑦 = 𝑥 → 𝑥 ∈ 𝐵 ) ) |
| 21 | eldifn | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ 𝑥 ∈ 𝐵 ) | |
| 22 | 20 21 | nsyli | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ 𝑦 = 𝑥 ) ) |
| 23 | 22 | imp | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) → ¬ 𝑦 = 𝑥 ) |
| 24 | 23 | adantll | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) → ¬ 𝑦 = 𝑥 ) |
| 25 | 24 | adantl | ⊢ ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) → ¬ 𝑦 = 𝑥 ) |
| 26 | trel | ⊢ ( Tr 𝐵 → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) | |
| 27 | 26 | expcomd | ⊢ ( Tr 𝐵 → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝐵 ) ) ) |
| 28 | 27 | imp | ⊢ ( ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝐵 ) ) |
| 29 | 28 21 | nsyli | ⊢ ( ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ 𝑥 ∈ 𝑦 ) ) |
| 30 | 29 | ex | ⊢ ( Tr 𝐵 → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 31 | 30 | adantld | ⊢ ( Tr 𝐵 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 32 | 31 | imp32 | ⊢ ( ( Tr 𝐵 ∧ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) → ¬ 𝑥 ∈ 𝑦 ) |
| 33 | 32 | adantll | ⊢ ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) → ¬ 𝑥 ∈ 𝑦 ) |
| 34 | ordwe | ⊢ ( Ord 𝐴 → E We 𝐴 ) | |
| 35 | ssel2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐴 ) | |
| 36 | 35 11 | anim12i | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) → ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
| 37 | wecmpep | ⊢ ( ( E We 𝐴 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ∈ 𝑦 ) ) | |
| 38 | 34 36 37 | syl2an | ⊢ ( ( Ord 𝐴 ∧ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) → ( 𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ∈ 𝑦 ) ) |
| 39 | 38 | adantlr | ⊢ ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) → ( 𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ∈ 𝑦 ) ) |
| 40 | 25 33 39 | ecase23d | ⊢ ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) → 𝑦 ∈ 𝑥 ) |
| 41 | 40 | exp44 | ⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 42 | 41 | com34 | ⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑥 ) ) ) ) |
| 43 | 42 | imp31 | ⊢ ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑥 ) ) |
| 44 | 43 | ssrdv | ⊢ ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) → 𝐵 ⊆ 𝑥 ) |
| 45 | 44 | adantrr | ⊢ ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝐵 ⊆ 𝑥 ) |
| 46 | 18 45 | eqssd | ⊢ ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝑥 = 𝐵 ) |
| 47 | 11 | ad2antrl | ⊢ ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝑥 ∈ 𝐴 ) |
| 48 | 46 47 | eqeltrrd | ⊢ ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝐵 ∈ 𝐴 ) |
| 49 | 48 | rexlimdvaa | ⊢ ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ → 𝐵 ∈ 𝐴 ) ) |
| 50 | 10 49 | syl5 | ⊢ ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( Ord 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → 𝐵 ∈ 𝐴 ) ) |
| 51 | 50 | exp4b | ⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( Ord 𝐴 → ( ( 𝐴 ∖ 𝐵 ) ≠ ∅ → 𝐵 ∈ 𝐴 ) ) ) ) |
| 52 | 51 | com23 | ⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( Ord 𝐴 → ( 𝐵 ⊆ 𝐴 → ( ( 𝐴 ∖ 𝐵 ) ≠ ∅ → 𝐵 ∈ 𝐴 ) ) ) ) |
| 53 | 52 | adantrd | ⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( ( 𝐴 ∖ 𝐵 ) ≠ ∅ → 𝐵 ∈ 𝐴 ) ) ) ) |
| 54 | 53 | pm2.43i | ⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( ( 𝐴 ∖ 𝐵 ) ≠ ∅ → 𝐵 ∈ 𝐴 ) ) ) |
| 55 | 7 54 | syl7 | ⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) ) |
| 56 | 55 | exp4a | ⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ≠ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) ) |
| 57 | 56 | pm2.43d | ⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ≠ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) |
| 58 | 57 | impd | ⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) |
| 59 | 6 58 | impbid | ⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ∈ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) ) |