This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Theorem 6M(4) of Enderton p. 151 and asserts that given a family of mutually disjoint nonempty sets, a set exists containing exactly one member from each set in the family. The proof does not depend on AC. (Contributed by NM, 11-Apr-2004) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac5 | ⊢ ( CHOICE ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac4 | ⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) ) | |
| 2 | neeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 ≠ ∅ ↔ 𝑤 ≠ ∅ ) ) | |
| 3 | 2 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ↔ ∀ 𝑤 ∈ 𝑥 𝑤 ≠ ∅ ) |
| 4 | 3 | anbi2i | ⊢ ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ) ↔ ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑤 ∈ 𝑥 𝑤 ≠ ∅ ) ) |
| 5 | r19.26 | ⊢ ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑤 ≠ ∅ ) ↔ ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑤 ∈ 𝑥 𝑤 ≠ ∅ ) ) | |
| 6 | 4 5 | bitr4i | ⊢ ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ) ↔ ∀ 𝑤 ∈ 𝑥 ( ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑤 ≠ ∅ ) ) |
| 7 | pm3.35 | ⊢ ( ( 𝑤 ≠ ∅ ∧ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) | |
| 8 | 7 | ancoms | ⊢ ( ( ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑤 ≠ ∅ ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
| 9 | 8 | ralimi | ⊢ ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑤 ≠ ∅ ) → ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
| 10 | 6 9 | sylbi | ⊢ ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ) → ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
| 11 | r19.26 | ⊢ ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ↔ ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) | |
| 12 | elin | ⊢ ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ ran 𝑓 ) ) | |
| 13 | fvelrnb | ⊢ ( 𝑓 Fn 𝑥 → ( 𝑣 ∈ ran 𝑓 ↔ ∃ 𝑡 ∈ 𝑥 ( 𝑓 ‘ 𝑡 ) = 𝑣 ) ) | |
| 14 | 13 | biimpac | ⊢ ( ( 𝑣 ∈ ran 𝑓 ∧ 𝑓 Fn 𝑥 ) → ∃ 𝑡 ∈ 𝑥 ( 𝑓 ‘ 𝑡 ) = 𝑣 ) |
| 15 | fveq2 | ⊢ ( 𝑤 = 𝑡 → ( 𝑓 ‘ 𝑤 ) = ( 𝑓 ‘ 𝑡 ) ) | |
| 16 | id | ⊢ ( 𝑤 = 𝑡 → 𝑤 = 𝑡 ) | |
| 17 | 15 16 | eleq12d | ⊢ ( 𝑤 = 𝑡 → ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ↔ ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ) ) |
| 18 | neeq2 | ⊢ ( 𝑤 = 𝑡 → ( 𝑧 ≠ 𝑤 ↔ 𝑧 ≠ 𝑡 ) ) | |
| 19 | ineq2 | ⊢ ( 𝑤 = 𝑡 → ( 𝑧 ∩ 𝑤 ) = ( 𝑧 ∩ 𝑡 ) ) | |
| 20 | 19 | eqeq1d | ⊢ ( 𝑤 = 𝑡 → ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ( 𝑧 ∩ 𝑡 ) = ∅ ) ) |
| 21 | 18 20 | imbi12d | ⊢ ( 𝑤 = 𝑡 → ( ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ) |
| 22 | 17 21 | anbi12d | ⊢ ( 𝑤 = 𝑡 → ( ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ↔ ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ) ) |
| 23 | 22 | rspcv | ⊢ ( 𝑡 ∈ 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ) ) |
| 24 | minel | ⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ∩ 𝑡 ) = ∅ ) → ¬ ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) | |
| 25 | 24 | ex | ⊢ ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 → ( ( 𝑧 ∩ 𝑡 ) = ∅ → ¬ ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) ) |
| 26 | 25 | imim2d | ⊢ ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 → ( ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) → ( 𝑧 ≠ 𝑡 → ¬ ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) ) ) |
| 27 | 26 | imp | ⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) → ( 𝑧 ≠ 𝑡 → ¬ ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) ) |
| 28 | 27 | necon4ad | ⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 → 𝑧 = 𝑡 ) ) |
| 29 | eleq1 | ⊢ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ) | |
| 30 | 29 | biimpar | ⊢ ( ( ( 𝑓 ‘ 𝑡 ) = 𝑣 ∧ 𝑣 ∈ 𝑧 ) → ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) |
| 31 | 28 30 | impel | ⊢ ( ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ∧ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 ∧ 𝑣 ∈ 𝑧 ) ) → 𝑧 = 𝑡 ) |
| 32 | fveq2 | ⊢ ( 𝑧 = 𝑡 → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑡 ) ) | |
| 33 | eqeq2 | ⊢ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑡 ) ↔ ( 𝑓 ‘ 𝑧 ) = 𝑣 ) ) | |
| 34 | eqcom | ⊢ ( ( 𝑓 ‘ 𝑧 ) = 𝑣 ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) | |
| 35 | 33 34 | bitrdi | ⊢ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑡 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 36 | 32 35 | imbitrid | ⊢ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( 𝑧 = 𝑡 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 37 | 36 | ad2antrl | ⊢ ( ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ∧ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 ∧ 𝑣 ∈ 𝑧 ) ) → ( 𝑧 = 𝑡 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 38 | 31 37 | mpd | ⊢ ( ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ∧ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 ∧ 𝑣 ∈ 𝑧 ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) |
| 39 | 38 | exp32 | ⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) → ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( 𝑣 ∈ 𝑧 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 40 | 23 39 | syl6com | ⊢ ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑡 ∈ 𝑥 → ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( 𝑣 ∈ 𝑧 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 41 | 40 | com14 | ⊢ ( 𝑣 ∈ 𝑧 → ( 𝑡 ∈ 𝑥 → ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 42 | 41 | rexlimdv | ⊢ ( 𝑣 ∈ 𝑧 → ( ∃ 𝑡 ∈ 𝑥 ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 43 | 14 42 | syl5 | ⊢ ( 𝑣 ∈ 𝑧 → ( ( 𝑣 ∈ ran 𝑓 ∧ 𝑓 Fn 𝑥 ) → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 44 | 43 | expd | ⊢ ( 𝑣 ∈ 𝑧 → ( 𝑣 ∈ ran 𝑓 → ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 45 | 44 | com4t | ⊢ ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 ∈ 𝑧 → ( 𝑣 ∈ ran 𝑓 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 46 | 45 | imp4b | ⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 47 | 12 46 | biimtrid | ⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 48 | 11 47 | sylan2br | ⊢ ( ( 𝑓 Fn 𝑥 ∧ ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 49 | 48 | anassrs | ⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 50 | 49 | adantlr | ⊢ ( ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 51 | fveq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑓 ‘ 𝑤 ) = ( 𝑓 ‘ 𝑧 ) ) | |
| 52 | id | ⊢ ( 𝑤 = 𝑧 → 𝑤 = 𝑧 ) | |
| 53 | 51 52 | eleq12d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ↔ ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 54 | 53 | rspcv | ⊢ ( 𝑧 ∈ 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 55 | fnfvelrn | ⊢ ( ( 𝑓 Fn 𝑥 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) | |
| 56 | 55 | expcom | ⊢ ( 𝑧 ∈ 𝑥 → ( 𝑓 Fn 𝑥 → ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) ) |
| 57 | 54 56 | anim12d | ⊢ ( 𝑧 ∈ 𝑥 → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ 𝑓 Fn 𝑥 ) → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) ) ) |
| 58 | elin | ⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) ) | |
| 59 | 57 58 | imbitrrdi | ⊢ ( 𝑧 ∈ 𝑥 → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ 𝑓 Fn 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 60 | 59 | expd | ⊢ ( 𝑧 ∈ 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 → ( 𝑓 Fn 𝑥 → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) |
| 61 | 60 | com13 | ⊢ ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 → ( 𝑧 ∈ 𝑥 → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) |
| 62 | 61 | imp31 | ⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) |
| 63 | eleq1 | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝑧 ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) | |
| 64 | 62 63 | syl5ibrcom | ⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑣 = ( 𝑓 ‘ 𝑧 ) → 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 65 | 64 | adantr | ⊢ ( ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 = ( 𝑓 ‘ 𝑧 ) → 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 66 | 50 65 | impbid | ⊢ ( ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 67 | 66 | ex | ⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 68 | 67 | alrimdv | ⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 69 | fvex | ⊢ ( 𝑓 ‘ 𝑧 ) ∈ V | |
| 70 | eqeq2 | ⊢ ( ℎ = ( 𝑓 ‘ 𝑧 ) → ( 𝑣 = ℎ ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) | |
| 71 | 70 | bibi2d | ⊢ ( ℎ = ( 𝑓 ‘ 𝑧 ) → ( ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ℎ ) ↔ ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 72 | 71 | albidv | ⊢ ( ℎ = ( 𝑓 ‘ 𝑧 ) → ( ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ℎ ) ↔ ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 73 | 69 72 | spcev | ⊢ ( ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) → ∃ ℎ ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ℎ ) ) |
| 74 | eu6 | ⊢ ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ ∃ ℎ ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ℎ ) ) | |
| 75 | 73 74 | sylibr | ⊢ ( ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) |
| 76 | 68 75 | syl6 | ⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 77 | 76 | ralimdva | ⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 78 | 77 | ex | ⊢ ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) |
| 79 | 10 78 | syl5 | ⊢ ( 𝑓 Fn 𝑥 → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ) → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) |
| 80 | 79 | expd | ⊢ ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) → ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) ) |
| 81 | 80 | imp4b | ⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 82 | vex | ⊢ 𝑓 ∈ V | |
| 83 | 82 | rnex | ⊢ ran 𝑓 ∈ V |
| 84 | ineq2 | ⊢ ( 𝑦 = ran 𝑓 → ( 𝑧 ∩ 𝑦 ) = ( 𝑧 ∩ ran 𝑓 ) ) | |
| 85 | 84 | eleq2d | ⊢ ( 𝑦 = ran 𝑓 → ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 86 | 85 | eubidv | ⊢ ( 𝑦 = ran 𝑓 → ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 87 | 86 | ralbidv | ⊢ ( 𝑦 = ran 𝑓 → ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 88 | 83 87 | spcev | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) |
| 89 | 81 88 | syl6 | ⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 90 | 89 | exlimiv | ⊢ ( ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 91 | 90 | alimi | ⊢ ( ∀ 𝑥 ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 92 | 1 91 | sylbi | ⊢ ( CHOICE → ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 93 | eqid | ⊢ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } = { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } | |
| 94 | biid | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) | |
| 95 | eqid | ⊢ ( ∪ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ∩ 𝑦 ) = ( ∪ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ∩ 𝑦 ) | |
| 96 | 93 94 95 | dfac5lem5 | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ∃ 𝑓 ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 97 | 96 | alrimiv | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ∀ ℎ ∃ 𝑓 ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 98 | dfac3 | ⊢ ( CHOICE ↔ ∀ ℎ ∃ 𝑓 ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) | |
| 99 | 97 98 | sylibr | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → CHOICE ) |
| 100 | 92 99 | impbii | ⊢ ( CHOICE ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |