This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac5 . (Contributed by NM, 12-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfac5lem.1 | ⊢ 𝐴 = { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } | |
| dfac5lem.2 | ⊢ ( 𝜑 ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) | ||
| dfac5lem.3 | ⊢ 𝐵 = ( ∪ 𝐴 ∩ 𝑦 ) | ||
| Assertion | dfac5lem5 | ⊢ ( 𝜑 → ∃ 𝑓 ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac5lem.1 | ⊢ 𝐴 = { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } | |
| 2 | dfac5lem.2 | ⊢ ( 𝜑 ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) | |
| 3 | dfac5lem.3 | ⊢ 𝐵 = ( ∪ 𝐴 ∩ 𝑦 ) | |
| 4 | 1 2 | dfac5lem4 | ⊢ ( 𝜑 → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) |
| 5 | simpr | ⊢ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ ℎ ) → 𝑤 ∈ ℎ ) | |
| 6 | 5 | a1i | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ ℎ ) → 𝑤 ∈ ℎ ) ) |
| 7 | ineq1 | ⊢ ( 𝑧 = ( { 𝑤 } × 𝑤 ) → ( 𝑧 ∩ 𝑦 ) = ( ( { 𝑤 } × 𝑤 ) ∩ 𝑦 ) ) | |
| 8 | 7 | eleq2d | ⊢ ( 𝑧 = ( { 𝑤 } × 𝑤 ) → ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ 𝑣 ∈ ( ( { 𝑤 } × 𝑤 ) ∩ 𝑦 ) ) ) |
| 9 | 8 | eubidv | ⊢ ( 𝑧 = ( { 𝑤 } × 𝑤 ) → ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃! 𝑣 𝑣 ∈ ( ( { 𝑤 } × 𝑤 ) ∩ 𝑦 ) ) ) |
| 10 | 9 | rspccv | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → ( ( { 𝑤 } × 𝑤 ) ∈ 𝐴 → ∃! 𝑣 𝑣 ∈ ( ( { 𝑤 } × 𝑤 ) ∩ 𝑦 ) ) ) |
| 11 | 1 | dfac5lem3 | ⊢ ( ( { 𝑤 } × 𝑤 ) ∈ 𝐴 ↔ ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ ℎ ) ) |
| 12 | dfac5lem1 | ⊢ ( ∃! 𝑣 𝑣 ∈ ( ( { 𝑤 } × 𝑤 ) ∩ 𝑦 ) ↔ ∃! 𝑔 ( 𝑔 ∈ 𝑤 ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ) | |
| 13 | 10 11 12 | 3imtr3g | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ ℎ ) → ∃! 𝑔 ( 𝑔 ∈ 𝑤 ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ) ) |
| 14 | 6 13 | jcad | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ ℎ ) → ( 𝑤 ∈ ℎ ∧ ∃! 𝑔 ( 𝑔 ∈ 𝑤 ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ) ) ) |
| 15 | 3 | eleq2i | ⊢ ( 〈 𝑤 , 𝑔 〉 ∈ 𝐵 ↔ 〈 𝑤 , 𝑔 〉 ∈ ( ∪ 𝐴 ∩ 𝑦 ) ) |
| 16 | elin | ⊢ ( 〈 𝑤 , 𝑔 〉 ∈ ( ∪ 𝐴 ∩ 𝑦 ) ↔ ( 〈 𝑤 , 𝑔 〉 ∈ ∪ 𝐴 ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ) | |
| 17 | 1 | dfac5lem2 | ⊢ ( 〈 𝑤 , 𝑔 〉 ∈ ∪ 𝐴 ↔ ( 𝑤 ∈ ℎ ∧ 𝑔 ∈ 𝑤 ) ) |
| 18 | 17 | anbi1i | ⊢ ( ( 〈 𝑤 , 𝑔 〉 ∈ ∪ 𝐴 ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ↔ ( ( 𝑤 ∈ ℎ ∧ 𝑔 ∈ 𝑤 ) ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ) |
| 19 | anass | ⊢ ( ( ( 𝑤 ∈ ℎ ∧ 𝑔 ∈ 𝑤 ) ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ↔ ( 𝑤 ∈ ℎ ∧ ( 𝑔 ∈ 𝑤 ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ) ) | |
| 20 | 18 19 | bitri | ⊢ ( ( 〈 𝑤 , 𝑔 〉 ∈ ∪ 𝐴 ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ↔ ( 𝑤 ∈ ℎ ∧ ( 𝑔 ∈ 𝑤 ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ) ) |
| 21 | 15 16 20 | 3bitri | ⊢ ( 〈 𝑤 , 𝑔 〉 ∈ 𝐵 ↔ ( 𝑤 ∈ ℎ ∧ ( 𝑔 ∈ 𝑤 ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ) ) |
| 22 | 21 | eubii | ⊢ ( ∃! 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 ↔ ∃! 𝑔 ( 𝑤 ∈ ℎ ∧ ( 𝑔 ∈ 𝑤 ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ) ) |
| 23 | euanv | ⊢ ( ∃! 𝑔 ( 𝑤 ∈ ℎ ∧ ( 𝑔 ∈ 𝑤 ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ) ↔ ( 𝑤 ∈ ℎ ∧ ∃! 𝑔 ( 𝑔 ∈ 𝑤 ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ) ) | |
| 24 | 22 23 | bitr2i | ⊢ ( ( 𝑤 ∈ ℎ ∧ ∃! 𝑔 ( 𝑔 ∈ 𝑤 ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ) ↔ ∃! 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 ) |
| 25 | 14 24 | imbitrdi | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ ℎ ) → ∃! 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 ) ) |
| 26 | euex | ⊢ ( ∃! 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 → ∃ 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 ) | |
| 27 | nfeu1 | ⊢ Ⅎ 𝑔 ∃! 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 | |
| 28 | nfv | ⊢ Ⅎ 𝑔 ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 | |
| 29 | 27 28 | nfim | ⊢ Ⅎ 𝑔 ( ∃! 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 → ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 ) |
| 30 | 21 | simprbi | ⊢ ( 〈 𝑤 , 𝑔 〉 ∈ 𝐵 → ( 𝑔 ∈ 𝑤 ∧ 〈 𝑤 , 𝑔 〉 ∈ 𝑦 ) ) |
| 31 | 30 | simpld | ⊢ ( 〈 𝑤 , 𝑔 〉 ∈ 𝐵 → 𝑔 ∈ 𝑤 ) |
| 32 | tz6.12 | ⊢ ( ( 〈 𝑤 , 𝑔 〉 ∈ 𝐵 ∧ ∃! 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 ) → ( 𝐵 ‘ 𝑤 ) = 𝑔 ) | |
| 33 | 32 | eleq1d | ⊢ ( ( 〈 𝑤 , 𝑔 〉 ∈ 𝐵 ∧ ∃! 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 ) → ( ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 ↔ 𝑔 ∈ 𝑤 ) ) |
| 34 | 33 | biimparc | ⊢ ( ( 𝑔 ∈ 𝑤 ∧ ( 〈 𝑤 , 𝑔 〉 ∈ 𝐵 ∧ ∃! 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 ) ) → ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 ) |
| 35 | 34 | exp32 | ⊢ ( 𝑔 ∈ 𝑤 → ( 〈 𝑤 , 𝑔 〉 ∈ 𝐵 → ( ∃! 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 → ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 ) ) ) |
| 36 | 31 35 | mpcom | ⊢ ( 〈 𝑤 , 𝑔 〉 ∈ 𝐵 → ( ∃! 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 → ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 37 | 29 36 | exlimi | ⊢ ( ∃ 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 → ( ∃! 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 → ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 38 | 26 37 | mpcom | ⊢ ( ∃! 𝑔 〈 𝑤 , 𝑔 〉 ∈ 𝐵 → ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 ) |
| 39 | 25 38 | syl6 | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ ℎ ) → ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 40 | 39 | expcomd | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → ( 𝑤 ∈ ℎ → ( 𝑤 ≠ ∅ → ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 ) ) ) |
| 41 | 40 | ralrimiv | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 42 | vex | ⊢ 𝑦 ∈ V | |
| 43 | 42 | inex2 | ⊢ ( ∪ 𝐴 ∩ 𝑦 ) ∈ V |
| 44 | 3 43 | eqeltri | ⊢ 𝐵 ∈ V |
| 45 | fveq1 | ⊢ ( 𝑓 = 𝐵 → ( 𝑓 ‘ 𝑤 ) = ( 𝐵 ‘ 𝑤 ) ) | |
| 46 | 45 | eleq1d | ⊢ ( 𝑓 = 𝐵 → ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ↔ ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 47 | 46 | imbi2d | ⊢ ( 𝑓 = 𝐵 → ( ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ↔ ( 𝑤 ≠ ∅ → ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 ) ) ) |
| 48 | 47 | ralbidv | ⊢ ( 𝑓 = 𝐵 → ( ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ↔ ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 ) ) ) |
| 49 | 44 48 | spcev | ⊢ ( ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝐵 ‘ 𝑤 ) ∈ 𝑤 ) → ∃ 𝑓 ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 50 | 41 49 | syl | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → ∃ 𝑓 ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 51 | 50 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → ∃ 𝑓 ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 52 | 4 51 | syl | ⊢ ( 𝜑 → ∃ 𝑓 ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |