This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Theorem 6M(4) of Enderton p. 151 and asserts that given a family of mutually disjoint nonempty sets, a set exists containing exactly one member from each set in the family. The proof does not depend on AC. (Contributed by NM, 11-Apr-2004) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac5 | |- ( CHOICE <-> A. x ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac4 | |- ( CHOICE <-> A. x E. f ( f Fn x /\ A. w e. x ( w =/= (/) -> ( f ` w ) e. w ) ) ) |
|
| 2 | neeq1 | |- ( z = w -> ( z =/= (/) <-> w =/= (/) ) ) |
|
| 3 | 2 | cbvralvw | |- ( A. z e. x z =/= (/) <-> A. w e. x w =/= (/) ) |
| 4 | 3 | anbi2i | |- ( ( A. w e. x ( w =/= (/) -> ( f ` w ) e. w ) /\ A. z e. x z =/= (/) ) <-> ( A. w e. x ( w =/= (/) -> ( f ` w ) e. w ) /\ A. w e. x w =/= (/) ) ) |
| 5 | r19.26 | |- ( A. w e. x ( ( w =/= (/) -> ( f ` w ) e. w ) /\ w =/= (/) ) <-> ( A. w e. x ( w =/= (/) -> ( f ` w ) e. w ) /\ A. w e. x w =/= (/) ) ) |
|
| 6 | 4 5 | bitr4i | |- ( ( A. w e. x ( w =/= (/) -> ( f ` w ) e. w ) /\ A. z e. x z =/= (/) ) <-> A. w e. x ( ( w =/= (/) -> ( f ` w ) e. w ) /\ w =/= (/) ) ) |
| 7 | pm3.35 | |- ( ( w =/= (/) /\ ( w =/= (/) -> ( f ` w ) e. w ) ) -> ( f ` w ) e. w ) |
|
| 8 | 7 | ancoms | |- ( ( ( w =/= (/) -> ( f ` w ) e. w ) /\ w =/= (/) ) -> ( f ` w ) e. w ) |
| 9 | 8 | ralimi | |- ( A. w e. x ( ( w =/= (/) -> ( f ` w ) e. w ) /\ w =/= (/) ) -> A. w e. x ( f ` w ) e. w ) |
| 10 | 6 9 | sylbi | |- ( ( A. w e. x ( w =/= (/) -> ( f ` w ) e. w ) /\ A. z e. x z =/= (/) ) -> A. w e. x ( f ` w ) e. w ) |
| 11 | r19.26 | |- ( A. w e. x ( ( f ` w ) e. w /\ ( z =/= w -> ( z i^i w ) = (/) ) ) <-> ( A. w e. x ( f ` w ) e. w /\ A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) ) |
|
| 12 | elin | |- ( v e. ( z i^i ran f ) <-> ( v e. z /\ v e. ran f ) ) |
|
| 13 | fvelrnb | |- ( f Fn x -> ( v e. ran f <-> E. t e. x ( f ` t ) = v ) ) |
|
| 14 | 13 | biimpac | |- ( ( v e. ran f /\ f Fn x ) -> E. t e. x ( f ` t ) = v ) |
| 15 | fveq2 | |- ( w = t -> ( f ` w ) = ( f ` t ) ) |
|
| 16 | id | |- ( w = t -> w = t ) |
|
| 17 | 15 16 | eleq12d | |- ( w = t -> ( ( f ` w ) e. w <-> ( f ` t ) e. t ) ) |
| 18 | neeq2 | |- ( w = t -> ( z =/= w <-> z =/= t ) ) |
|
| 19 | ineq2 | |- ( w = t -> ( z i^i w ) = ( z i^i t ) ) |
|
| 20 | 19 | eqeq1d | |- ( w = t -> ( ( z i^i w ) = (/) <-> ( z i^i t ) = (/) ) ) |
| 21 | 18 20 | imbi12d | |- ( w = t -> ( ( z =/= w -> ( z i^i w ) = (/) ) <-> ( z =/= t -> ( z i^i t ) = (/) ) ) ) |
| 22 | 17 21 | anbi12d | |- ( w = t -> ( ( ( f ` w ) e. w /\ ( z =/= w -> ( z i^i w ) = (/) ) ) <-> ( ( f ` t ) e. t /\ ( z =/= t -> ( z i^i t ) = (/) ) ) ) ) |
| 23 | 22 | rspcv | |- ( t e. x -> ( A. w e. x ( ( f ` w ) e. w /\ ( z =/= w -> ( z i^i w ) = (/) ) ) -> ( ( f ` t ) e. t /\ ( z =/= t -> ( z i^i t ) = (/) ) ) ) ) |
| 24 | minel | |- ( ( ( f ` t ) e. t /\ ( z i^i t ) = (/) ) -> -. ( f ` t ) e. z ) |
|
| 25 | 24 | ex | |- ( ( f ` t ) e. t -> ( ( z i^i t ) = (/) -> -. ( f ` t ) e. z ) ) |
| 26 | 25 | imim2d | |- ( ( f ` t ) e. t -> ( ( z =/= t -> ( z i^i t ) = (/) ) -> ( z =/= t -> -. ( f ` t ) e. z ) ) ) |
| 27 | 26 | imp | |- ( ( ( f ` t ) e. t /\ ( z =/= t -> ( z i^i t ) = (/) ) ) -> ( z =/= t -> -. ( f ` t ) e. z ) ) |
| 28 | 27 | necon4ad | |- ( ( ( f ` t ) e. t /\ ( z =/= t -> ( z i^i t ) = (/) ) ) -> ( ( f ` t ) e. z -> z = t ) ) |
| 29 | eleq1 | |- ( ( f ` t ) = v -> ( ( f ` t ) e. z <-> v e. z ) ) |
|
| 30 | 29 | biimpar | |- ( ( ( f ` t ) = v /\ v e. z ) -> ( f ` t ) e. z ) |
| 31 | 28 30 | impel | |- ( ( ( ( f ` t ) e. t /\ ( z =/= t -> ( z i^i t ) = (/) ) ) /\ ( ( f ` t ) = v /\ v e. z ) ) -> z = t ) |
| 32 | fveq2 | |- ( z = t -> ( f ` z ) = ( f ` t ) ) |
|
| 33 | eqeq2 | |- ( ( f ` t ) = v -> ( ( f ` z ) = ( f ` t ) <-> ( f ` z ) = v ) ) |
|
| 34 | eqcom | |- ( ( f ` z ) = v <-> v = ( f ` z ) ) |
|
| 35 | 33 34 | bitrdi | |- ( ( f ` t ) = v -> ( ( f ` z ) = ( f ` t ) <-> v = ( f ` z ) ) ) |
| 36 | 32 35 | imbitrid | |- ( ( f ` t ) = v -> ( z = t -> v = ( f ` z ) ) ) |
| 37 | 36 | ad2antrl | |- ( ( ( ( f ` t ) e. t /\ ( z =/= t -> ( z i^i t ) = (/) ) ) /\ ( ( f ` t ) = v /\ v e. z ) ) -> ( z = t -> v = ( f ` z ) ) ) |
| 38 | 31 37 | mpd | |- ( ( ( ( f ` t ) e. t /\ ( z =/= t -> ( z i^i t ) = (/) ) ) /\ ( ( f ` t ) = v /\ v e. z ) ) -> v = ( f ` z ) ) |
| 39 | 38 | exp32 | |- ( ( ( f ` t ) e. t /\ ( z =/= t -> ( z i^i t ) = (/) ) ) -> ( ( f ` t ) = v -> ( v e. z -> v = ( f ` z ) ) ) ) |
| 40 | 23 39 | syl6com | |- ( A. w e. x ( ( f ` w ) e. w /\ ( z =/= w -> ( z i^i w ) = (/) ) ) -> ( t e. x -> ( ( f ` t ) = v -> ( v e. z -> v = ( f ` z ) ) ) ) ) |
| 41 | 40 | com14 | |- ( v e. z -> ( t e. x -> ( ( f ` t ) = v -> ( A. w e. x ( ( f ` w ) e. w /\ ( z =/= w -> ( z i^i w ) = (/) ) ) -> v = ( f ` z ) ) ) ) ) |
| 42 | 41 | rexlimdv | |- ( v e. z -> ( E. t e. x ( f ` t ) = v -> ( A. w e. x ( ( f ` w ) e. w /\ ( z =/= w -> ( z i^i w ) = (/) ) ) -> v = ( f ` z ) ) ) ) |
| 43 | 14 42 | syl5 | |- ( v e. z -> ( ( v e. ran f /\ f Fn x ) -> ( A. w e. x ( ( f ` w ) e. w /\ ( z =/= w -> ( z i^i w ) = (/) ) ) -> v = ( f ` z ) ) ) ) |
| 44 | 43 | expd | |- ( v e. z -> ( v e. ran f -> ( f Fn x -> ( A. w e. x ( ( f ` w ) e. w /\ ( z =/= w -> ( z i^i w ) = (/) ) ) -> v = ( f ` z ) ) ) ) ) |
| 45 | 44 | com4t | |- ( f Fn x -> ( A. w e. x ( ( f ` w ) e. w /\ ( z =/= w -> ( z i^i w ) = (/) ) ) -> ( v e. z -> ( v e. ran f -> v = ( f ` z ) ) ) ) ) |
| 46 | 45 | imp4b | |- ( ( f Fn x /\ A. w e. x ( ( f ` w ) e. w /\ ( z =/= w -> ( z i^i w ) = (/) ) ) ) -> ( ( v e. z /\ v e. ran f ) -> v = ( f ` z ) ) ) |
| 47 | 12 46 | biimtrid | |- ( ( f Fn x /\ A. w e. x ( ( f ` w ) e. w /\ ( z =/= w -> ( z i^i w ) = (/) ) ) ) -> ( v e. ( z i^i ran f ) -> v = ( f ` z ) ) ) |
| 48 | 11 47 | sylan2br | |- ( ( f Fn x /\ ( A. w e. x ( f ` w ) e. w /\ A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) ) -> ( v e. ( z i^i ran f ) -> v = ( f ` z ) ) ) |
| 49 | 48 | anassrs | |- ( ( ( f Fn x /\ A. w e. x ( f ` w ) e. w ) /\ A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> ( v e. ( z i^i ran f ) -> v = ( f ` z ) ) ) |
| 50 | 49 | adantlr | |- ( ( ( ( f Fn x /\ A. w e. x ( f ` w ) e. w ) /\ z e. x ) /\ A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> ( v e. ( z i^i ran f ) -> v = ( f ` z ) ) ) |
| 51 | fveq2 | |- ( w = z -> ( f ` w ) = ( f ` z ) ) |
|
| 52 | id | |- ( w = z -> w = z ) |
|
| 53 | 51 52 | eleq12d | |- ( w = z -> ( ( f ` w ) e. w <-> ( f ` z ) e. z ) ) |
| 54 | 53 | rspcv | |- ( z e. x -> ( A. w e. x ( f ` w ) e. w -> ( f ` z ) e. z ) ) |
| 55 | fnfvelrn | |- ( ( f Fn x /\ z e. x ) -> ( f ` z ) e. ran f ) |
|
| 56 | 55 | expcom | |- ( z e. x -> ( f Fn x -> ( f ` z ) e. ran f ) ) |
| 57 | 54 56 | anim12d | |- ( z e. x -> ( ( A. w e. x ( f ` w ) e. w /\ f Fn x ) -> ( ( f ` z ) e. z /\ ( f ` z ) e. ran f ) ) ) |
| 58 | elin | |- ( ( f ` z ) e. ( z i^i ran f ) <-> ( ( f ` z ) e. z /\ ( f ` z ) e. ran f ) ) |
|
| 59 | 57 58 | imbitrrdi | |- ( z e. x -> ( ( A. w e. x ( f ` w ) e. w /\ f Fn x ) -> ( f ` z ) e. ( z i^i ran f ) ) ) |
| 60 | 59 | expd | |- ( z e. x -> ( A. w e. x ( f ` w ) e. w -> ( f Fn x -> ( f ` z ) e. ( z i^i ran f ) ) ) ) |
| 61 | 60 | com13 | |- ( f Fn x -> ( A. w e. x ( f ` w ) e. w -> ( z e. x -> ( f ` z ) e. ( z i^i ran f ) ) ) ) |
| 62 | 61 | imp31 | |- ( ( ( f Fn x /\ A. w e. x ( f ` w ) e. w ) /\ z e. x ) -> ( f ` z ) e. ( z i^i ran f ) ) |
| 63 | eleq1 | |- ( v = ( f ` z ) -> ( v e. ( z i^i ran f ) <-> ( f ` z ) e. ( z i^i ran f ) ) ) |
|
| 64 | 62 63 | syl5ibrcom | |- ( ( ( f Fn x /\ A. w e. x ( f ` w ) e. w ) /\ z e. x ) -> ( v = ( f ` z ) -> v e. ( z i^i ran f ) ) ) |
| 65 | 64 | adantr | |- ( ( ( ( f Fn x /\ A. w e. x ( f ` w ) e. w ) /\ z e. x ) /\ A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> ( v = ( f ` z ) -> v e. ( z i^i ran f ) ) ) |
| 66 | 50 65 | impbid | |- ( ( ( ( f Fn x /\ A. w e. x ( f ` w ) e. w ) /\ z e. x ) /\ A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> ( v e. ( z i^i ran f ) <-> v = ( f ` z ) ) ) |
| 67 | 66 | ex | |- ( ( ( f Fn x /\ A. w e. x ( f ` w ) e. w ) /\ z e. x ) -> ( A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) -> ( v e. ( z i^i ran f ) <-> v = ( f ` z ) ) ) ) |
| 68 | 67 | alrimdv | |- ( ( ( f Fn x /\ A. w e. x ( f ` w ) e. w ) /\ z e. x ) -> ( A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) -> A. v ( v e. ( z i^i ran f ) <-> v = ( f ` z ) ) ) ) |
| 69 | fvex | |- ( f ` z ) e. _V |
|
| 70 | eqeq2 | |- ( h = ( f ` z ) -> ( v = h <-> v = ( f ` z ) ) ) |
|
| 71 | 70 | bibi2d | |- ( h = ( f ` z ) -> ( ( v e. ( z i^i ran f ) <-> v = h ) <-> ( v e. ( z i^i ran f ) <-> v = ( f ` z ) ) ) ) |
| 72 | 71 | albidv | |- ( h = ( f ` z ) -> ( A. v ( v e. ( z i^i ran f ) <-> v = h ) <-> A. v ( v e. ( z i^i ran f ) <-> v = ( f ` z ) ) ) ) |
| 73 | 69 72 | spcev | |- ( A. v ( v e. ( z i^i ran f ) <-> v = ( f ` z ) ) -> E. h A. v ( v e. ( z i^i ran f ) <-> v = h ) ) |
| 74 | eu6 | |- ( E! v v e. ( z i^i ran f ) <-> E. h A. v ( v e. ( z i^i ran f ) <-> v = h ) ) |
|
| 75 | 73 74 | sylibr | |- ( A. v ( v e. ( z i^i ran f ) <-> v = ( f ` z ) ) -> E! v v e. ( z i^i ran f ) ) |
| 76 | 68 75 | syl6 | |- ( ( ( f Fn x /\ A. w e. x ( f ` w ) e. w ) /\ z e. x ) -> ( A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) -> E! v v e. ( z i^i ran f ) ) ) |
| 77 | 76 | ralimdva | |- ( ( f Fn x /\ A. w e. x ( f ` w ) e. w ) -> ( A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) -> A. z e. x E! v v e. ( z i^i ran f ) ) ) |
| 78 | 77 | ex | |- ( f Fn x -> ( A. w e. x ( f ` w ) e. w -> ( A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) -> A. z e. x E! v v e. ( z i^i ran f ) ) ) ) |
| 79 | 10 78 | syl5 | |- ( f Fn x -> ( ( A. w e. x ( w =/= (/) -> ( f ` w ) e. w ) /\ A. z e. x z =/= (/) ) -> ( A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) -> A. z e. x E! v v e. ( z i^i ran f ) ) ) ) |
| 80 | 79 | expd | |- ( f Fn x -> ( A. w e. x ( w =/= (/) -> ( f ` w ) e. w ) -> ( A. z e. x z =/= (/) -> ( A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) -> A. z e. x E! v v e. ( z i^i ran f ) ) ) ) ) |
| 81 | 80 | imp4b | |- ( ( f Fn x /\ A. w e. x ( w =/= (/) -> ( f ` w ) e. w ) ) -> ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> A. z e. x E! v v e. ( z i^i ran f ) ) ) |
| 82 | vex | |- f e. _V |
|
| 83 | 82 | rnex | |- ran f e. _V |
| 84 | ineq2 | |- ( y = ran f -> ( z i^i y ) = ( z i^i ran f ) ) |
|
| 85 | 84 | eleq2d | |- ( y = ran f -> ( v e. ( z i^i y ) <-> v e. ( z i^i ran f ) ) ) |
| 86 | 85 | eubidv | |- ( y = ran f -> ( E! v v e. ( z i^i y ) <-> E! v v e. ( z i^i ran f ) ) ) |
| 87 | 86 | ralbidv | |- ( y = ran f -> ( A. z e. x E! v v e. ( z i^i y ) <-> A. z e. x E! v v e. ( z i^i ran f ) ) ) |
| 88 | 83 87 | spcev | |- ( A. z e. x E! v v e. ( z i^i ran f ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) |
| 89 | 81 88 | syl6 | |- ( ( f Fn x /\ A. w e. x ( w =/= (/) -> ( f ` w ) e. w ) ) -> ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) ) |
| 90 | 89 | exlimiv | |- ( E. f ( f Fn x /\ A. w e. x ( w =/= (/) -> ( f ` w ) e. w ) ) -> ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) ) |
| 91 | 90 | alimi | |- ( A. x E. f ( f Fn x /\ A. w e. x ( w =/= (/) -> ( f ` w ) e. w ) ) -> A. x ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) ) |
| 92 | 1 91 | sylbi | |- ( CHOICE -> A. x ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) ) |
| 93 | eqid | |- { u | ( u =/= (/) /\ E. t e. h u = ( { t } X. t ) ) } = { u | ( u =/= (/) /\ E. t e. h u = ( { t } X. t ) ) } |
|
| 94 | biid | |- ( A. x ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) <-> A. x ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) ) |
|
| 95 | eqid | |- ( U. { u | ( u =/= (/) /\ E. t e. h u = ( { t } X. t ) ) } i^i y ) = ( U. { u | ( u =/= (/) /\ E. t e. h u = ( { t } X. t ) ) } i^i y ) |
|
| 96 | 93 94 95 | dfac5lem5 | |- ( A. x ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) -> E. f A. w e. h ( w =/= (/) -> ( f ` w ) e. w ) ) |
| 97 | 96 | alrimiv | |- ( A. x ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) -> A. h E. f A. w e. h ( w =/= (/) -> ( f ` w ) e. w ) ) |
| 98 | dfac3 | |- ( CHOICE <-> A. h E. f A. w e. h ( w =/= (/) -> ( f ` w ) e. w ) ) |
|
| 99 | 97 98 | sylibr | |- ( A. x ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) -> CHOICE ) |
| 100 | 92 99 | impbii | |- ( CHOICE <-> A. x ( ( A. z e. x z =/= (/) /\ A. z e. x A. w e. x ( z =/= w -> ( z i^i w ) = (/) ) ) -> E. y A. z e. x E! v v e. ( z i^i y ) ) ) |