This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the unique existential quantifier df-eu not using the at-most-one quantifier. (Contributed by NM, 12-Aug-1993) This used to be the definition of the unique existential quantifier, while df-eu was then proved as dfeu . (Revised by BJ, 30-Sep-2022) (Proof shortened by Wolf Lammen, 3-Jan-2023) Remove use of ax-11 . (Revised by SN, 21-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eu6 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmoeu | ⊢ ( ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 2 | 1 | anbi2i | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 3 | abai | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ) | |
| 4 | eu3v | ⊢ ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) | |
| 5 | 2 3 4 | 3bitr4ri | ⊢ ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 6 | abai | ⊢ ( ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∃ 𝑥 𝜑 ) ↔ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 ) ) ) | |
| 7 | ancom | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∃ 𝑥 𝜑 ) ) | |
| 8 | biimpr | ⊢ ( ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) | |
| 9 | 8 | alimi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 10 | 9 | eximi | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 11 | exsbim | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∃ 𝑥 𝜑 ) | |
| 12 | 10 11 | syl | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 ) |
| 13 | 12 | biantru | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 ) ) ) |
| 14 | 6 7 13 | 3bitr4i | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| 15 | 5 14 | bitri | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |