This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of two versions of the Axiom of Choice. The left-hand side is defined as the Axiom of Choice (first form) of Enderton p. 49. The right-hand side is the Axiom of Choice of TakeutiZaring p. 83. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004) (Revised by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac3 | ⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ac | ⊢ ( CHOICE ↔ ∀ 𝑦 ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | vuniex | ⊢ ∪ 𝑥 ∈ V | |
| 4 | 2 3 | xpex | ⊢ ( 𝑥 × ∪ 𝑥 ) ∈ V |
| 5 | simpl | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) → 𝑤 ∈ 𝑥 ) | |
| 6 | elunii | ⊢ ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑣 ∈ ∪ 𝑥 ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) → 𝑣 ∈ ∪ 𝑥 ) |
| 8 | 5 7 | jca | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) → ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ ∪ 𝑥 ) ) |
| 9 | 8 | ssopab2i | ⊢ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ ∪ 𝑥 ) } |
| 10 | df-xp | ⊢ ( 𝑥 × ∪ 𝑥 ) = { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ ∪ 𝑥 ) } | |
| 11 | 9 10 | sseqtrri | ⊢ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ⊆ ( 𝑥 × ∪ 𝑥 ) |
| 12 | 4 11 | ssexi | ⊢ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ∈ V |
| 13 | sseq2 | ⊢ ( 𝑦 = { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } → ( 𝑓 ⊆ 𝑦 ↔ 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) ) | |
| 14 | dmeq | ⊢ ( 𝑦 = { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } → dom 𝑦 = dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) | |
| 15 | 14 | fneq2d | ⊢ ( 𝑦 = { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } → ( 𝑓 Fn dom 𝑦 ↔ 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) ) |
| 16 | 13 15 | anbi12d | ⊢ ( 𝑦 = { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } → ( ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ↔ ( 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ∧ 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) ) ) |
| 17 | 16 | exbidv | ⊢ ( 𝑦 = { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } → ( ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ↔ ∃ 𝑓 ( 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ∧ 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) ) ) |
| 18 | 12 17 | spcv | ⊢ ( ∀ 𝑦 ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) → ∃ 𝑓 ( 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ∧ 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) ) |
| 19 | fndm | ⊢ ( 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } → dom 𝑓 = dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) | |
| 20 | dmopab | ⊢ dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } = { 𝑤 ∣ ∃ 𝑣 ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } | |
| 21 | 20 | eleq2i | ⊢ ( 𝑧 ∈ dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ↔ 𝑧 ∈ { 𝑤 ∣ ∃ 𝑣 ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) |
| 22 | vex | ⊢ 𝑧 ∈ V | |
| 23 | elequ1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) | |
| 24 | eleq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑣 ∈ 𝑤 ↔ 𝑣 ∈ 𝑧 ) ) | |
| 25 | 23 24 | anbi12d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑣 ∈ 𝑧 ) ) ) |
| 26 | 25 | exbidv | ⊢ ( 𝑤 = 𝑧 → ( ∃ 𝑣 ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) ↔ ∃ 𝑣 ( 𝑧 ∈ 𝑥 ∧ 𝑣 ∈ 𝑧 ) ) ) |
| 27 | 22 26 | elab | ⊢ ( 𝑧 ∈ { 𝑤 ∣ ∃ 𝑣 ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ↔ ∃ 𝑣 ( 𝑧 ∈ 𝑥 ∧ 𝑣 ∈ 𝑧 ) ) |
| 28 | 19.42v | ⊢ ( ∃ 𝑣 ( 𝑧 ∈ 𝑥 ∧ 𝑣 ∈ 𝑧 ) ↔ ( 𝑧 ∈ 𝑥 ∧ ∃ 𝑣 𝑣 ∈ 𝑧 ) ) | |
| 29 | n0 | ⊢ ( 𝑧 ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ 𝑧 ) | |
| 30 | 29 | anbi2i | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) ↔ ( 𝑧 ∈ 𝑥 ∧ ∃ 𝑣 𝑣 ∈ 𝑧 ) ) |
| 31 | 28 30 | bitr4i | ⊢ ( ∃ 𝑣 ( 𝑧 ∈ 𝑥 ∧ 𝑣 ∈ 𝑧 ) ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) ) |
| 32 | 21 27 31 | 3bitrri | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) ↔ 𝑧 ∈ dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) |
| 33 | eleq2 | ⊢ ( dom 𝑓 = dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } → ( 𝑧 ∈ dom 𝑓 ↔ 𝑧 ∈ dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) ) | |
| 34 | 32 33 | bitr4id | ⊢ ( dom 𝑓 = dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) ↔ 𝑧 ∈ dom 𝑓 ) ) |
| 35 | 19 34 | syl | ⊢ ( 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) ↔ 𝑧 ∈ dom 𝑓 ) ) |
| 36 | 35 | adantl | ⊢ ( ( 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ∧ 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) ↔ 𝑧 ∈ dom 𝑓 ) ) |
| 37 | fnfun | ⊢ ( 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } → Fun 𝑓 ) | |
| 38 | funfvima3 | ⊢ ( ( Fun 𝑓 ∧ 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) → ( 𝑧 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑧 ) ∈ ( { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } “ { 𝑧 } ) ) ) | |
| 39 | 38 | ancoms | ⊢ ( ( 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ∧ Fun 𝑓 ) → ( 𝑧 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑧 ) ∈ ( { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } “ { 𝑧 } ) ) ) |
| 40 | 37 39 | sylan2 | ⊢ ( ( 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ∧ 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) → ( 𝑧 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑧 ) ∈ ( { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } “ { 𝑧 } ) ) ) |
| 41 | 36 40 | sylbid | ⊢ ( ( 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ∧ 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ( 𝑓 ‘ 𝑧 ) ∈ ( { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } “ { 𝑧 } ) ) ) |
| 42 | 41 | imp | ⊢ ( ( ( 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ∧ 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) ) → ( 𝑓 ‘ 𝑧 ) ∈ ( { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } “ { 𝑧 } ) ) |
| 43 | imasng | ⊢ ( 𝑧 ∈ V → ( { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } “ { 𝑧 } ) = { 𝑢 ∣ 𝑧 { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } 𝑢 } ) | |
| 44 | 43 | elv | ⊢ ( { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } “ { 𝑧 } ) = { 𝑢 ∣ 𝑧 { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } 𝑢 } |
| 45 | vex | ⊢ 𝑢 ∈ V | |
| 46 | elequ1 | ⊢ ( 𝑣 = 𝑢 → ( 𝑣 ∈ 𝑧 ↔ 𝑢 ∈ 𝑧 ) ) | |
| 47 | 46 | anbi2d | ⊢ ( 𝑣 = 𝑢 → ( ( 𝑧 ∈ 𝑥 ∧ 𝑣 ∈ 𝑧 ) ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 48 | eqid | ⊢ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } = { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } | |
| 49 | 22 45 25 47 48 | brab | ⊢ ( 𝑧 { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } 𝑢 ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) |
| 50 | 49 | abbii | ⊢ { 𝑢 ∣ 𝑧 { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } 𝑢 } = { 𝑢 ∣ ( 𝑧 ∈ 𝑥 ∧ 𝑢 ∈ 𝑧 ) } |
| 51 | 44 50 | eqtri | ⊢ ( { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } “ { 𝑧 } ) = { 𝑢 ∣ ( 𝑧 ∈ 𝑥 ∧ 𝑢 ∈ 𝑧 ) } |
| 52 | ibar | ⊢ ( 𝑧 ∈ 𝑥 → ( 𝑢 ∈ 𝑧 ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) | |
| 53 | 52 | eqabdv | ⊢ ( 𝑧 ∈ 𝑥 → 𝑧 = { 𝑢 ∣ ( 𝑧 ∈ 𝑥 ∧ 𝑢 ∈ 𝑧 ) } ) |
| 54 | 51 53 | eqtr4id | ⊢ ( 𝑧 ∈ 𝑥 → ( { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } “ { 𝑧 } ) = 𝑧 ) |
| 55 | 54 | eleq2d | ⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝑓 ‘ 𝑧 ) ∈ ( { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } “ { 𝑧 } ) ↔ ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 56 | 55 | ad2antrl | ⊢ ( ( ( 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ∧ 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) ) → ( ( 𝑓 ‘ 𝑧 ) ∈ ( { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } “ { 𝑧 } ) ↔ ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 57 | 42 56 | mpbid | ⊢ ( ( ( 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ∧ 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) ) → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) |
| 58 | 57 | exp32 | ⊢ ( ( 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ∧ 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 59 | 58 | ralrimiv | ⊢ ( ( 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ∧ 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 60 | 59 | eximi | ⊢ ( ∃ 𝑓 ( 𝑓 ⊆ { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ∧ 𝑓 Fn dom { 〈 𝑤 , 𝑣 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ 𝑣 ∈ 𝑤 ) } ) → ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 61 | 18 60 | syl | ⊢ ( ∀ 𝑦 ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) → ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 62 | 61 | alrimiv | ⊢ ( ∀ 𝑦 ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) → ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 63 | eqid | ⊢ ( 𝑤 ∈ dom 𝑦 ↦ ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) = ( 𝑤 ∈ dom 𝑦 ↦ ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) | |
| 64 | 63 | aceq3lem | ⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ) |
| 65 | 64 | alrimiv | ⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑦 ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ) |
| 66 | 62 65 | impbii | ⊢ ( ∀ 𝑦 ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ↔ ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 67 | 1 66 | bitri | ⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |