This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of BellMachover p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac4 | ⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac3 | ⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) | |
| 2 | fveq1 | ⊢ ( 𝑓 = 𝑦 → ( 𝑓 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑓 = 𝑦 → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑓 = 𝑦 → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 5 | 4 | ralbidv | ⊢ ( 𝑓 = 𝑦 → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 6 | 5 | cbvexvw | ⊢ ( ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 7 | fvex | ⊢ ( 𝑦 ‘ 𝑤 ) ∈ V | |
| 8 | eqid | ⊢ ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) = ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) | |
| 9 | 7 8 | fnmpti | ⊢ ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) Fn 𝑥 |
| 10 | fveq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑦 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑧 ) ) | |
| 11 | fvex | ⊢ ( 𝑦 ‘ 𝑧 ) ∈ V | |
| 12 | 10 8 11 | fvmpt | ⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) |
| 13 | 12 | eleq1d | ⊢ ( 𝑧 ∈ 𝑥 → ( ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 15 | 14 | ralbiia | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 16 | 15 | anbi2i | ⊢ ( ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ↔ ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 17 | 9 16 | mpbiran | ⊢ ( ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 18 | fvrn0 | ⊢ ( 𝑦 ‘ 𝑤 ) ∈ ( ran 𝑦 ∪ { ∅ } ) | |
| 19 | 18 | rgenw | ⊢ ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) ∈ ( ran 𝑦 ∪ { ∅ } ) |
| 20 | 8 | fmpt | ⊢ ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) ∈ ( ran 𝑦 ∪ { ∅ } ) ↔ ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) : 𝑥 ⟶ ( ran 𝑦 ∪ { ∅ } ) ) |
| 21 | 19 20 | mpbi | ⊢ ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) : 𝑥 ⟶ ( ran 𝑦 ∪ { ∅ } ) |
| 22 | vex | ⊢ 𝑥 ∈ V | |
| 23 | vex | ⊢ 𝑦 ∈ V | |
| 24 | 23 | rnex | ⊢ ran 𝑦 ∈ V |
| 25 | p0ex | ⊢ { ∅ } ∈ V | |
| 26 | 24 25 | unex | ⊢ ( ran 𝑦 ∪ { ∅ } ) ∈ V |
| 27 | fex2 | ⊢ ( ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) : 𝑥 ⟶ ( ran 𝑦 ∪ { ∅ } ) ∧ 𝑥 ∈ V ∧ ( ran 𝑦 ∪ { ∅ } ) ∈ V ) → ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ∈ V ) | |
| 28 | 21 22 26 27 | mp3an | ⊢ ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ∈ V |
| 29 | fneq1 | ⊢ ( 𝑓 = ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) → ( 𝑓 Fn 𝑥 ↔ ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) Fn 𝑥 ) ) | |
| 30 | fveq1 | ⊢ ( 𝑓 = ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) → ( 𝑓 ‘ 𝑧 ) = ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ) | |
| 31 | 30 | eleq1d | ⊢ ( 𝑓 = ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 32 | 31 | imbi2d | ⊢ ( 𝑓 = ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 33 | 32 | ralbidv | ⊢ ( 𝑓 = ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 34 | 29 33 | anbi12d | ⊢ ( 𝑓 = ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) → ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ↔ ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) ) |
| 35 | 28 34 | spcev | ⊢ ( ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) → ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 36 | 17 35 | sylbir | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 37 | 36 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 38 | 6 37 | sylbi | ⊢ ( ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 39 | exsimpr | ⊢ ( ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) | |
| 40 | 38 39 | impbii | ⊢ ( ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 41 | 40 | albii | ⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑥 ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 42 | 1 41 | bitri | ⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |