This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in PtakPulmannova p. 68. Also Lemma 9.2(delta) in MaedaMaeda p. 41. ( atcvat4i analog.) (Contributed by NM, 30-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrat4.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvrat4.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| cvrat4.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| cvrat4.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| cvrat4.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | cvrat4 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrat4.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvrat4.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | cvrat4.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | cvrat4.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 5 | cvrat4.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 6 | hlatl | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ AtLat ) |
| 8 | simpr1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) | |
| 9 | 1 2 4 5 | atlex | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃ 𝑟 ∈ 𝐴 𝑟 ≤ 𝑋 ) |
| 10 | 9 | 3exp | ⊢ ( 𝐾 ∈ AtLat → ( 𝑋 ∈ 𝐵 → ( 𝑋 ≠ 0 → ∃ 𝑟 ∈ 𝐴 𝑟 ≤ 𝑋 ) ) ) |
| 11 | 7 8 10 | sylc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ≠ 0 → ∃ 𝑟 ∈ 𝐴 𝑟 ≤ 𝑋 ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑋 ≠ 0 → ∃ 𝑟 ∈ 𝐴 𝑟 ≤ 𝑋 ) ) |
| 13 | simpll | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝐾 ∈ HL ) | |
| 14 | simplr3 | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) | |
| 15 | simpr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝑟 ∈ 𝐴 ) | |
| 16 | 2 3 5 | hlatlej1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑄 ∨ 𝑟 ) ) |
| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑄 ∨ 𝑟 ) ) |
| 18 | breq1 | ⊢ ( 𝑃 = 𝑄 → ( 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ↔ 𝑄 ≤ ( 𝑄 ∨ 𝑟 ) ) ) | |
| 19 | 17 18 | imbitrrid | ⊢ ( 𝑃 = 𝑄 → ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
| 20 | 19 | expd | ⊢ ( 𝑃 = 𝑄 → ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑟 ∈ 𝐴 → 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |
| 21 | 20 | impcom | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑟 ∈ 𝐴 → 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
| 22 | 21 | anim2d | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 = 𝑄 ) → ( ( 𝑟 ≤ 𝑋 ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |
| 23 | 22 | expcomd | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑟 ∈ 𝐴 → ( 𝑟 ≤ 𝑋 → ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
| 24 | 23 | reximdvai | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 = 𝑄 ) → ( ∃ 𝑟 ∈ 𝐴 𝑟 ≤ 𝑋 → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |
| 25 | 12 24 | syld | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑋 ≠ 0 → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |
| 26 | 25 | ex | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 = 𝑄 → ( 𝑋 ≠ 0 → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
| 27 | 26 | a1i | ⊢ ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 = 𝑄 → ( 𝑋 ≠ 0 → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) ) |
| 28 | 27 | com4l | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 = 𝑄 → ( 𝑋 ≠ 0 → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) ) |
| 29 | 28 | imp4a | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 = 𝑄 → ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
| 30 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 31 | 30 | adantr | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
| 32 | simpr3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) | |
| 33 | 1 5 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 34 | 32 33 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐵 ) |
| 35 | 1 2 3 | latleeqj2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑄 ≤ 𝑋 ↔ ( 𝑋 ∨ 𝑄 ) = 𝑋 ) ) |
| 36 | 31 34 8 35 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑄 ≤ 𝑋 ↔ ( 𝑋 ∨ 𝑄 ) = 𝑋 ) ) |
| 37 | 36 | biimpa | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑄 ≤ 𝑋 ) → ( 𝑋 ∨ 𝑄 ) = 𝑋 ) |
| 38 | 37 | breq2d | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑄 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ↔ 𝑃 ≤ 𝑋 ) ) |
| 39 | 38 | biimpa | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑃 ≤ 𝑋 ) |
| 40 | 39 | expl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑃 ≤ 𝑋 ) ) |
| 41 | simpl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) | |
| 42 | simpr2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) | |
| 43 | 2 3 5 | hlatlej2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) |
| 44 | 41 32 42 43 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) |
| 45 | 40 44 | jctird | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) ) ) |
| 46 | 45 42 | jctild | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑃 ∈ 𝐴 ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) ) ) ) |
| 47 | 46 | impl | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑃 ∈ 𝐴 ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) ) ) |
| 48 | breq1 | ⊢ ( 𝑟 = 𝑃 → ( 𝑟 ≤ 𝑋 ↔ 𝑃 ≤ 𝑋 ) ) | |
| 49 | oveq2 | ⊢ ( 𝑟 = 𝑃 → ( 𝑄 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑃 ) ) | |
| 50 | 49 | breq2d | ⊢ ( 𝑟 = 𝑃 → ( 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ↔ 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) ) |
| 51 | 48 50 | anbi12d | ⊢ ( 𝑟 = 𝑃 → ( ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ↔ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) ) ) |
| 52 | 51 | rspcev | ⊢ ( ( 𝑃 ∈ 𝐴 ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
| 53 | 47 52 | syl | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
| 54 | 53 | adantrl | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑄 ≤ 𝑋 ) ∧ ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
| 55 | 54 | exp31 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑄 ≤ 𝑋 → ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
| 56 | simpr | ⊢ ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) | |
| 57 | ioran | ⊢ ( ¬ ( 𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋 ) ↔ ( ¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ) | |
| 58 | df-ne | ⊢ ( 𝑃 ≠ 𝑄 ↔ ¬ 𝑃 = 𝑄 ) | |
| 59 | 58 | anbi1i | ⊢ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ↔ ( ¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ) |
| 60 | 57 59 | bitr4i | ⊢ ( ¬ ( 𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋 ) ↔ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ) |
| 61 | eqid | ⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) | |
| 62 | 1 2 3 61 5 | cvrat3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) |
| 63 | 62 | 3expd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ≠ 𝑄 → ( ¬ 𝑄 ≤ 𝑋 → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) ) ) |
| 64 | 63 | imp4c | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) |
| 65 | 1 5 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 66 | 42 65 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐵 ) |
| 67 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 68 | 31 66 34 67 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 69 | 1 2 61 | latmle1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ) |
| 70 | 31 8 68 69 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ) |
| 71 | 70 | adantr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ) |
| 72 | simpll | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → 𝐾 ∈ HL ) | |
| 73 | 63 | imp44 | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) |
| 74 | simplr2 | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) | |
| 75 | 34 | adantr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐵 ) |
| 76 | 73 74 75 | 3jca | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) |
| 77 | 72 76 | jca | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) ) |
| 78 | 1 2 61 4 5 | atnle | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑄 ≤ 𝑋 ↔ ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) = 0 ) ) |
| 79 | 7 32 8 78 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ¬ 𝑄 ≤ 𝑋 ↔ ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) = 0 ) ) |
| 80 | 1 61 | latmcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) = ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) ) |
| 81 | 31 34 8 80 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) = ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) ) |
| 82 | 81 | eqeq1d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) = 0 ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) = 0 ) ) |
| 83 | 79 82 | bitrd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ¬ 𝑄 ≤ 𝑋 ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) = 0 ) ) |
| 84 | 1 61 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
| 85 | 31 8 68 84 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
| 86 | 85 8 34 | 3jca | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) ) |
| 87 | 31 86 | jca | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝐾 ∈ Lat ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) ) ) |
| 88 | 1 2 61 | latmlem2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) ) ) |
| 89 | 87 70 88 | sylc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) ) |
| 90 | 89 81 | breqtrd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) ) |
| 91 | breq2 | ⊢ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) = 0 → ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) ↔ ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ 0 ) ) | |
| 92 | 90 91 | syl5ibcom | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) = 0 → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ 0 ) ) |
| 93 | hlop | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) | |
| 94 | 93 | adantr | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ OP ) |
| 95 | 1 61 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ∈ 𝐵 ) |
| 96 | 31 34 85 95 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ∈ 𝐵 ) |
| 97 | 1 2 4 | ople0 | ⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ∈ 𝐵 ) → ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ 0 ↔ ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ) ) |
| 98 | 94 96 97 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ 0 ↔ ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ) ) |
| 99 | 92 98 | sylibd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) = 0 → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ) ) |
| 100 | 83 99 | sylbid | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ¬ 𝑄 ≤ 𝑋 → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ) ) |
| 101 | 100 | imp | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ¬ 𝑄 ≤ 𝑋 ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ) |
| 102 | 101 | adantrl | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ) |
| 103 | 102 | adantrr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ) |
| 104 | 1 2 61 | latmle2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 105 | 31 8 68 104 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 106 | 1 3 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
| 107 | 31 66 34 106 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
| 108 | 105 107 | breqtrd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑄 ∨ 𝑃 ) ) |
| 109 | 108 | adantr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑄 ∨ 𝑃 ) ) |
| 110 | 30 | adantr | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) |
| 111 | simpr3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → 𝑄 ∈ 𝐵 ) | |
| 112 | simpr1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) | |
| 113 | 1 5 | atbase | ⊢ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
| 114 | 112 113 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
| 115 | 1 61 | latmcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 ) ) |
| 116 | 110 111 114 115 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 ) ) |
| 117 | 116 | eqeq1d | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ↔ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 ) = 0 ) ) |
| 118 | 1 2 3 61 4 5 | hlexch3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 ) = 0 ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑄 ∨ 𝑃 ) → 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) |
| 119 | 118 | 3expia | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → ( ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 ) = 0 → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑄 ∨ 𝑃 ) → 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) ) |
| 120 | 117 119 | sylbid | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑄 ∨ 𝑃 ) → 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) ) |
| 121 | 77 103 109 120 | syl3c | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 122 | 71 121 | jca | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) |
| 123 | 122 | ex | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) ) |
| 124 | 64 123 | jcad | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) ) ) |
| 125 | breq1 | ⊢ ( 𝑟 = ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) → ( 𝑟 ≤ 𝑋 ↔ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ) ) | |
| 126 | oveq2 | ⊢ ( 𝑟 = ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) → ( 𝑄 ∨ 𝑟 ) = ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) | |
| 127 | 126 | breq2d | ⊢ ( 𝑟 = ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ↔ 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) |
| 128 | 125 127 | anbi12d | ⊢ ( 𝑟 = ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) → ( ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ↔ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) ) |
| 129 | 128 | rspcev | ⊢ ( ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
| 130 | 124 129 | syl6 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |
| 131 | 130 | expd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
| 132 | 60 131 | biimtrid | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ¬ ( 𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
| 133 | 56 132 | syl7 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ¬ ( 𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋 ) → ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
| 134 | 29 55 133 | ecase3d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |