This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every nonzero element of an atomic lattice is greater than or equal to an atom. ( hatomic analog.) (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atlex.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atlex.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| atlex.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| atlex.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atlex | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlex.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atlex.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | atlex.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 4 | atlex.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
| 6 | 1 5 2 3 4 | isatl | ⊢ ( 𝐾 ∈ AtLat ↔ ( 𝐾 ∈ Lat ∧ 𝐵 ∈ dom ( glb ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) ) |
| 7 | 6 | simp3bi | ⊢ ( 𝐾 ∈ AtLat → ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 8 | neeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≠ 0 ↔ 𝑋 ≠ 0 ) ) | |
| 9 | breq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑋 ) ) | |
| 10 | 9 | rexbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑋 ) ) |
| 11 | 8 10 | imbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ↔ ( 𝑋 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑋 ) ) ) |
| 12 | 11 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( 𝑋 ∈ 𝐵 → ( 𝑋 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑋 ) ) ) |
| 13 | 7 12 | syl | ⊢ ( 𝐾 ∈ AtLat → ( 𝑋 ∈ 𝐵 → ( 𝑋 ≠ 0 → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑋 ) ) ) |
| 14 | 13 | 3imp | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑋 ) |