This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The join of a lattice commutes. ( chjcom analog.) (Contributed by NM, 16-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjcom.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latjcom.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjcom.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latjcom.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | opelxpi | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) | |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 5 | eqid | ⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) | |
| 6 | 1 2 5 | islat | ⊢ ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ( meet ‘ 𝐾 ) = ( 𝐵 × 𝐵 ) ) ) ) |
| 7 | simprl | ⊢ ( ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ( meet ‘ 𝐾 ) = ( 𝐵 × 𝐵 ) ) ) → dom ∨ = ( 𝐵 × 𝐵 ) ) | |
| 8 | 6 7 | sylbi | ⊢ ( 𝐾 ∈ Lat → dom ∨ = ( 𝐵 × 𝐵 ) ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → dom ∨ = ( 𝐵 × 𝐵 ) ) |
| 10 | 4 9 | eleqtrrd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) |
| 11 | opelxpi | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 〈 𝑌 , 𝑋 〉 ∈ ( 𝐵 × 𝐵 ) ) | |
| 12 | 11 | ancoms | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑌 , 𝑋 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 13 | 12 | 3adant1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑌 , 𝑋 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 14 | 13 9 | eleqtrrd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑌 , 𝑋 〉 ∈ dom ∨ ) |
| 15 | 10 14 | jca | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ∧ 〈 𝑌 , 𝑋 〉 ∈ dom ∨ ) ) |
| 16 | latpos | ⊢ ( 𝐾 ∈ Lat → 𝐾 ∈ Poset ) | |
| 17 | 1 2 | joincom | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ∧ 〈 𝑌 , 𝑋 〉 ∈ dom ∨ ) ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |
| 18 | 16 17 | syl3anl1 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ∧ 〈 𝑌 , 𝑋 〉 ∈ dom ∨ ) ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |
| 19 | 15 18 | mpdan | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |