This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of PtakPulmannova p. 68. ( atcvat3i analog.) (Contributed by NM, 30-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrat3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvrat3.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| cvrat3.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| cvrat3.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| cvrat3.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | cvrat3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrat3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvrat3.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | cvrat3.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | cvrat3.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | cvrat3.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 6 | eqid | ⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) | |
| 7 | 1 2 3 6 5 | cvr1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ¬ 𝑄 ≤ 𝑋 ↔ 𝑋 ( ⋖ ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) ) |
| 8 | 7 | 3adant3r2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ¬ 𝑄 ≤ 𝑋 ↔ 𝑋 ( ⋖ ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) ) |
| 9 | 8 | biimpa | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ¬ 𝑄 ≤ 𝑋 ) → 𝑋 ( ⋖ ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) |
| 10 | 9 | adantrr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → 𝑋 ( ⋖ ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) |
| 11 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
| 13 | simpr2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) | |
| 14 | 1 5 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 15 | 13 14 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐵 ) |
| 16 | simpr3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) | |
| 17 | 1 5 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 18 | 16 17 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐵 ) |
| 19 | 1 3 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
| 20 | 12 15 18 19 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
| 21 | 20 | oveq2d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( 𝑋 ∨ ( 𝑄 ∨ 𝑃 ) ) ) |
| 22 | simpr1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) | |
| 23 | 1 3 | latjass | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑃 ) = ( 𝑋 ∨ ( 𝑄 ∨ 𝑃 ) ) ) |
| 24 | 12 22 18 15 23 | syl13anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑃 ) = ( 𝑋 ∨ ( 𝑄 ∨ 𝑃 ) ) ) |
| 25 | 21 24 | eqtr4d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑃 ) ) |
| 26 | 25 | adantr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑃 ) ) |
| 27 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 28 | 12 22 18 27 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 29 | 1 2 3 | latjlej2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑃 ) ≤ ( ( 𝑋 ∨ 𝑄 ) ∨ ( 𝑋 ∨ 𝑄 ) ) ) ) |
| 30 | 12 15 28 28 29 | syl13anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑃 ) ≤ ( ( 𝑋 ∨ 𝑄 ) ∨ ( 𝑋 ∨ 𝑄 ) ) ) ) |
| 31 | 30 | imp | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑃 ) ≤ ( ( 𝑋 ∨ 𝑄 ) ∨ ( 𝑋 ∨ 𝑄 ) ) ) |
| 32 | 26 31 | eqbrtrd | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ≤ ( ( 𝑋 ∨ 𝑄 ) ∨ ( 𝑋 ∨ 𝑄 ) ) ) |
| 33 | 1 3 | latjidm | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) → ( ( 𝑋 ∨ 𝑄 ) ∨ ( 𝑋 ∨ 𝑄 ) ) = ( 𝑋 ∨ 𝑄 ) ) |
| 34 | 12 28 33 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ∨ 𝑄 ) ∨ ( 𝑋 ∨ 𝑄 ) ) = ( 𝑋 ∨ 𝑄 ) ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( ( 𝑋 ∨ 𝑄 ) ∨ ( 𝑋 ∨ 𝑄 ) ) = ( 𝑋 ∨ 𝑄 ) ) |
| 36 | 32 35 | breqtrd | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 37 | simpl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) | |
| 38 | 2 3 5 | hlatlej2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 39 | 37 13 16 38 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 40 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 41 | 12 15 18 40 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 42 | 1 2 3 | latjlej2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) → ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 43 | 12 18 41 22 42 | syl13anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) → ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 44 | 39 43 | mpd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
| 46 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
| 47 | 12 22 41 46 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
| 48 | 1 2 | latasymb | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) → ( ( ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑋 ∨ 𝑄 ) ∧ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) ↔ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( 𝑋 ∨ 𝑄 ) ) ) |
| 49 | 12 47 28 48 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑋 ∨ 𝑄 ) ∧ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) ↔ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( 𝑋 ∨ 𝑄 ) ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( ( ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑋 ∨ 𝑄 ) ∧ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) ↔ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( 𝑋 ∨ 𝑄 ) ) ) |
| 51 | 36 45 50 | mpbi2and | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( 𝑋 ∨ 𝑄 ) ) |
| 52 | 51 | breq2d | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ( ⋖ ‘ 𝐾 ) ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ↔ 𝑋 ( ⋖ ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) ) |
| 53 | 52 | adantrl | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( 𝑋 ( ⋖ ‘ 𝐾 ) ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ↔ 𝑋 ( ⋖ ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) ) |
| 54 | 10 53 | mpbird | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → 𝑋 ( ⋖ ‘ 𝐾 ) ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
| 55 | 54 | ex | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑋 ( ⋖ ‘ 𝐾 ) ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 56 | 1 3 4 6 | cvrexch | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ↔ 𝑋 ( ⋖ ‘ 𝐾 ) ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 57 | 37 22 41 56 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ↔ 𝑋 ( ⋖ ‘ 𝐾 ) ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 58 | 55 57 | sylibrd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 ≠ 𝑄 ) → ( ( ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) |
| 60 | 1 4 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
| 61 | 12 22 41 60 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
| 62 | 1 3 6 5 | cvrat2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) |
| 63 | 62 | 3expia | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) |
| 64 | 37 61 13 16 63 | syl13anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) |
| 65 | 64 | expdimp | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) |
| 66 | 59 65 | syld | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 ≠ 𝑄 ) → ( ( ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) |
| 67 | 66 | exp4b | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ≠ 𝑄 → ( ¬ 𝑄 ≤ 𝑋 → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) ) ) |
| 68 | 67 | 3impd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) |