This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing "an atom is not less than or equal to a lattice element." ( atnssm0 analog.) (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atnle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atnle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| atnle.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| atnle.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| atnle.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atnle | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atnle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atnle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | atnle.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | atnle.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 5 | atnle.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 6 | simpl1 | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) → 𝐾 ∈ AtLat ) | |
| 7 | atllat | ⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Lat ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 9 | 1 5 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 𝑃 ∈ 𝐵 ) |
| 11 | simp3 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 12 | 1 3 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑃 ∧ 𝑋 ) ∈ 𝐵 ) |
| 13 | 8 10 11 12 | syl3anc | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑃 ∧ 𝑋 ) ∈ 𝐵 ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) → ( 𝑃 ∧ 𝑋 ) ∈ 𝐵 ) |
| 15 | simpr | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) → ( 𝑃 ∧ 𝑋 ) ≠ 0 ) | |
| 16 | 1 2 4 5 | atlex | ⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑃 ∧ 𝑋 ) ∈ 𝐵 ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ ( 𝑃 ∧ 𝑋 ) ) |
| 17 | 6 14 15 16 | syl3anc | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ ( 𝑃 ∧ 𝑋 ) ) |
| 18 | simpl1 | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) | |
| 19 | 18 7 | syl | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
| 20 | 1 5 | atbase | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) |
| 21 | 20 | adantl | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) |
| 22 | simpl2 | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) | |
| 23 | 22 9 | syl | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑃 ∈ 𝐵 ) |
| 24 | simpl3 | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 25 | 1 2 3 | latlem12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑦 ≤ 𝑃 ∧ 𝑦 ≤ 𝑋 ) ↔ 𝑦 ≤ ( 𝑃 ∧ 𝑋 ) ) ) |
| 26 | 19 21 23 24 25 | syl13anc | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑦 ≤ 𝑃 ∧ 𝑦 ≤ 𝑋 ) ↔ 𝑦 ≤ ( 𝑃 ∧ 𝑋 ) ) ) |
| 27 | simpr | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) | |
| 28 | 2 5 | atcmp | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑦 ≤ 𝑃 ↔ 𝑦 = 𝑃 ) ) |
| 29 | 18 27 22 28 | syl3anc | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ≤ 𝑃 ↔ 𝑦 = 𝑃 ) ) |
| 30 | breq1 | ⊢ ( 𝑦 = 𝑃 → ( 𝑦 ≤ 𝑋 ↔ 𝑃 ≤ 𝑋 ) ) | |
| 31 | 30 | biimpd | ⊢ ( 𝑦 = 𝑃 → ( 𝑦 ≤ 𝑋 → 𝑃 ≤ 𝑋 ) ) |
| 32 | 29 31 | biimtrdi | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ≤ 𝑃 → ( 𝑦 ≤ 𝑋 → 𝑃 ≤ 𝑋 ) ) ) |
| 33 | 32 | impd | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑦 ≤ 𝑃 ∧ 𝑦 ≤ 𝑋 ) → 𝑃 ≤ 𝑋 ) ) |
| 34 | 26 33 | sylbird | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ≤ ( 𝑃 ∧ 𝑋 ) → 𝑃 ≤ 𝑋 ) ) |
| 35 | 34 | adantlr | ⊢ ( ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ≤ ( 𝑃 ∧ 𝑋 ) → 𝑃 ≤ 𝑋 ) ) |
| 36 | 35 | rexlimdva | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) → ( ∃ 𝑦 ∈ 𝐴 𝑦 ≤ ( 𝑃 ∧ 𝑋 ) → 𝑃 ≤ 𝑋 ) ) |
| 37 | 17 36 | mpd | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) → 𝑃 ≤ 𝑋 ) |
| 38 | 37 | ex | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑃 ∧ 𝑋 ) ≠ 0 → 𝑃 ≤ 𝑋 ) ) |
| 39 | 38 | necon1bd | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑃 ≤ 𝑋 → ( 𝑃 ∧ 𝑋 ) = 0 ) ) |
| 40 | 4 5 | atn0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ≠ 0 ) |
| 41 | 40 | 3adant3 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 𝑃 ≠ 0 ) |
| 42 | 1 2 3 | latleeqm1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑃 ≤ 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 𝑃 ) ) |
| 43 | 8 10 11 42 | syl3anc | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑃 ≤ 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 𝑃 ) ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) = 0 ) → ( 𝑃 ≤ 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 𝑃 ) ) |
| 45 | eqeq1 | ⊢ ( ( 𝑃 ∧ 𝑋 ) = 𝑃 → ( ( 𝑃 ∧ 𝑋 ) = 0 ↔ 𝑃 = 0 ) ) | |
| 46 | 45 | biimpcd | ⊢ ( ( 𝑃 ∧ 𝑋 ) = 0 → ( ( 𝑃 ∧ 𝑋 ) = 𝑃 → 𝑃 = 0 ) ) |
| 47 | 46 | adantl | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) = 0 ) → ( ( 𝑃 ∧ 𝑋 ) = 𝑃 → 𝑃 = 0 ) ) |
| 48 | 44 47 | sylbid | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) = 0 ) → ( 𝑃 ≤ 𝑋 → 𝑃 = 0 ) ) |
| 49 | 48 | necon3ad | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) = 0 ) → ( 𝑃 ≠ 0 → ¬ 𝑃 ≤ 𝑋 ) ) |
| 50 | 49 | ex | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑃 ∧ 𝑋 ) = 0 → ( 𝑃 ≠ 0 → ¬ 𝑃 ≤ 𝑋 ) ) ) |
| 51 | 41 50 | mpid | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑃 ∧ 𝑋 ) = 0 → ¬ 𝑃 ≤ 𝑋 ) ) |
| 52 | 39 51 | impbid | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 0 ) ) |