This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 of PtakPulmannova p. 68. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | atcvat3.1 | ⊢ 𝐴 ∈ Cℋ | |
| Assertion | atcvat4i | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐴 ≠ 0ℋ ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atcvat3.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | 1 | hatomici | ⊢ ( 𝐴 ≠ 0ℋ → ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴 ) |
| 3 | atelch | ⊢ ( 𝐶 ∈ HAtoms → 𝐶 ∈ Cℋ ) | |
| 4 | atelch | ⊢ ( 𝑥 ∈ HAtoms → 𝑥 ∈ Cℋ ) | |
| 5 | chub1 | ⊢ ( ( 𝐶 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → 𝐶 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝐶 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ) → 𝐶 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) |
| 7 | sseq1 | ⊢ ( 𝐵 = 𝐶 → ( 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ↔ 𝐶 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) | |
| 8 | 6 7 | imbitrrid | ⊢ ( 𝐵 = 𝐶 → ( ( 𝐶 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ) → 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) |
| 9 | 8 | expd | ⊢ ( 𝐵 = 𝐶 → ( 𝐶 ∈ HAtoms → ( 𝑥 ∈ HAtoms → 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) |
| 10 | 9 | impcom | ⊢ ( ( 𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶 ) → ( 𝑥 ∈ HAtoms → 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) |
| 11 | 10 | anim2d | ⊢ ( ( 𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ∈ HAtoms ) → ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) |
| 12 | 11 | expcomd | ⊢ ( ( 𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶 ) → ( 𝑥 ∈ HAtoms → ( 𝑥 ⊆ 𝐴 → ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) ) |
| 13 | 12 | reximdvai | ⊢ ( ( 𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶 ) → ( ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) |
| 14 | 2 13 | syl5 | ⊢ ( ( 𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶 ) → ( 𝐴 ≠ 0ℋ → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) |
| 15 | 14 | ex | ⊢ ( 𝐶 ∈ HAtoms → ( 𝐵 = 𝐶 → ( 𝐴 ≠ 0ℋ → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) ) |
| 16 | 15 | a1i | ⊢ ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) → ( 𝐶 ∈ HAtoms → ( 𝐵 = 𝐶 → ( 𝐴 ≠ 0ℋ → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) ) ) |
| 17 | 16 | com4l | ⊢ ( 𝐶 ∈ HAtoms → ( 𝐵 = 𝐶 → ( 𝐴 ≠ 0ℋ → ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) ) ) |
| 18 | 17 | imp4a | ⊢ ( 𝐶 ∈ HAtoms → ( 𝐵 = 𝐶 → ( ( 𝐴 ≠ 0ℋ ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐵 = 𝐶 → ( ( 𝐴 ≠ 0ℋ ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) ) |
| 20 | atelch | ⊢ ( 𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) | |
| 21 | chlejb2 | ⊢ ( ( 𝐶 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝐶 ⊆ 𝐴 ↔ ( 𝐴 ∨ℋ 𝐶 ) = 𝐴 ) ) | |
| 22 | 1 21 | mpan2 | ⊢ ( 𝐶 ∈ Cℋ → ( 𝐶 ⊆ 𝐴 ↔ ( 𝐴 ∨ℋ 𝐶 ) = 𝐴 ) ) |
| 23 | 22 | biimpa | ⊢ ( ( 𝐶 ∈ Cℋ ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐴 ∨ℋ 𝐶 ) = 𝐴 ) |
| 24 | 23 | sseq2d | ⊢ ( ( 𝐶 ∈ Cℋ ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ↔ 𝐵 ⊆ 𝐴 ) ) |
| 25 | 24 | biimpa | ⊢ ( ( ( 𝐶 ∈ Cℋ ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → 𝐵 ⊆ 𝐴 ) |
| 26 | 25 | expl | ⊢ ( 𝐶 ∈ Cℋ → ( ( 𝐶 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → 𝐵 ⊆ 𝐴 ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐶 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → 𝐵 ⊆ 𝐴 ) ) |
| 28 | chub2 | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → 𝐵 ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) | |
| 29 | 27 28 | jctird | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐶 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) ) ) |
| 30 | 20 3 29 | syl2an | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐶 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) ) ) |
| 31 | simpl | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → 𝐵 ∈ HAtoms ) | |
| 32 | 30 31 | jctild | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐶 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐵 ∈ HAtoms ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) ) ) ) |
| 33 | 32 | impl | ⊢ ( ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐵 ∈ HAtoms ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) ) ) |
| 34 | sseq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) | |
| 35 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐶 ∨ℋ 𝑥 ) = ( 𝐶 ∨ℋ 𝐵 ) ) | |
| 36 | 35 | sseq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ↔ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) ) |
| 37 | 34 36 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) ) ) |
| 38 | 37 | rspcev | ⊢ ( ( 𝐵 ∈ HAtoms ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) |
| 39 | 33 38 | syl | ⊢ ( ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) |
| 40 | 39 | adantrl | ⊢ ( ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐴 ≠ 0ℋ ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) |
| 41 | 40 | exp31 | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐶 ⊆ 𝐴 → ( ( 𝐴 ≠ 0ℋ ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) ) |
| 42 | simpr | ⊢ ( ( 𝐴 ≠ 0ℋ ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) | |
| 43 | ioran | ⊢ ( ¬ ( 𝐵 = 𝐶 ∨ 𝐶 ⊆ 𝐴 ) ↔ ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ) | |
| 44 | 1 | atcvat3i | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ HAtoms ) ) |
| 45 | 3 | ad2antlr | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) → 𝐶 ∈ Cℋ ) |
| 46 | 44 | imp | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ HAtoms ) |
| 47 | simpll | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) → 𝐵 ∈ HAtoms ) | |
| 48 | 45 46 47 | 3jca | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) → ( 𝐶 ∈ Cℋ ∧ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) ) |
| 49 | inss2 | ⊢ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) | |
| 50 | chjcom | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐵 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐵 ) ) | |
| 51 | 20 3 50 | syl2an | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐵 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐵 ) ) |
| 52 | 49 51 | sseqtrid | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) |
| 54 | atnssm0 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐶 ∈ HAtoms ) → ( ¬ 𝐶 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐶 ) = 0ℋ ) ) | |
| 55 | 1 54 | mpan | ⊢ ( 𝐶 ∈ HAtoms → ( ¬ 𝐶 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐶 ) = 0ℋ ) ) |
| 56 | 55 | adantl | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ¬ 𝐶 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐶 ) = 0ℋ ) ) |
| 57 | inss1 | ⊢ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ 𝐴 | |
| 58 | sslin | ⊢ ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ 𝐴 → ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ⊆ ( 𝐶 ∩ 𝐴 ) ) | |
| 59 | 57 58 | ax-mp | ⊢ ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ⊆ ( 𝐶 ∩ 𝐴 ) |
| 60 | incom | ⊢ ( 𝐶 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐶 ) | |
| 61 | 59 60 | sseqtri | ⊢ ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ⊆ ( 𝐴 ∩ 𝐶 ) |
| 62 | sseq2 | ⊢ ( ( 𝐴 ∩ 𝐶 ) = 0ℋ → ( ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ⊆ ( 𝐴 ∩ 𝐶 ) ↔ ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ⊆ 0ℋ ) ) | |
| 63 | 61 62 | mpbii | ⊢ ( ( 𝐴 ∩ 𝐶 ) = 0ℋ → ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ⊆ 0ℋ ) |
| 64 | simpr | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → 𝐶 ∈ Cℋ ) | |
| 65 | chjcl | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐵 ∨ℋ 𝐶 ) ∈ Cℋ ) | |
| 66 | chincl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐵 ∨ℋ 𝐶 ) ∈ Cℋ ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ Cℋ ) | |
| 67 | 1 65 66 | sylancr | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ Cℋ ) |
| 68 | chincl | ⊢ ( ( 𝐶 ∈ Cℋ ∧ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ Cℋ ) → ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ∈ Cℋ ) | |
| 69 | 64 67 68 | syl2anc | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ∈ Cℋ ) |
| 70 | 20 3 69 | syl2an | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ∈ Cℋ ) |
| 71 | chle0 | ⊢ ( ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ∈ Cℋ → ( ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ⊆ 0ℋ ↔ ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) = 0ℋ ) ) | |
| 72 | 70 71 | syl | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ⊆ 0ℋ ↔ ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) = 0ℋ ) ) |
| 73 | 63 72 | imbitrid | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐶 ) = 0ℋ → ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) = 0ℋ ) ) |
| 74 | 56 73 | sylbid | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ¬ 𝐶 ⊆ 𝐴 → ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) = 0ℋ ) ) |
| 75 | 74 | imp | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ¬ 𝐶 ⊆ 𝐴 ) → ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) = 0ℋ ) |
| 76 | 75 | adantrl | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ) → ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) = 0ℋ ) |
| 77 | 76 | adantrr | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) → ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) = 0ℋ ) |
| 78 | 53 77 | jca | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) → ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ ( 𝐶 ∨ℋ 𝐵 ) ∧ ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) = 0ℋ ) ) |
| 79 | atexch | ⊢ ( ( 𝐶 ∈ Cℋ ∧ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ HAtoms ∧ 𝐵 ∈ HAtoms ) → ( ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ ( 𝐶 ∨ℋ 𝐵 ) ∧ ( 𝐶 ∩ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) = 0ℋ ) → 𝐵 ⊆ ( 𝐶 ∨ℋ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) ) | |
| 80 | 48 78 79 | sylc | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) → 𝐵 ⊆ ( 𝐶 ∨ℋ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) |
| 81 | 80 57 | jctil | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) → ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) ) |
| 82 | 81 | ex | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) ) ) |
| 83 | 44 82 | jcad | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ HAtoms ∧ ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) ) ) ) |
| 84 | sseq1 | ⊢ ( 𝑥 = ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ 𝐴 ) ) | |
| 85 | oveq2 | ⊢ ( 𝑥 = ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) → ( 𝐶 ∨ℋ 𝑥 ) = ( 𝐶 ∨ℋ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) | |
| 86 | 85 | sseq2d | ⊢ ( 𝑥 = ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) → ( 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ↔ 𝐵 ⊆ ( 𝐶 ∨ℋ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) ) |
| 87 | 84 86 | anbi12d | ⊢ ( 𝑥 = ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ↔ ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) ) ) |
| 88 | 87 | rspcev | ⊢ ( ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ HAtoms ∧ ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) |
| 89 | 83 88 | syl6 | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) |
| 90 | 89 | expd | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) → ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) ) |
| 91 | 43 90 | biimtrid | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ¬ ( 𝐵 = 𝐶 ∨ 𝐶 ⊆ 𝐴 ) → ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) ) |
| 92 | 42 91 | syl7 | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ¬ ( 𝐵 = 𝐶 ∨ 𝐶 ⊆ 𝐴 ) → ( ( 𝐴 ≠ 0ℋ ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) ) |
| 93 | 19 41 92 | ecase3d | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐴 ≠ 0ℋ ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐶 ∨ℋ 𝑥 ) ) ) ) |