This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A meet is less than or equal to its first argument. (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latmle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latmle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| latmle.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | latmle1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latmle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latmle.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | simp1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) | |
| 5 | simp2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 6 | simp3 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 8 | 1 7 3 4 5 6 | latcl2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑌 〉 ∈ dom ( join ‘ 𝐾 ) ∧ 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) ) |
| 9 | 8 | simprd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) |
| 10 | 1 2 3 4 5 6 9 | lemeet1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) |