This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partially evaluated curry functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curfval.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| curfval.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| curfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| curfval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| curfval.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | ||
| curfval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| curf1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| curf1.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) | ||
| curf11.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| curf12.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| curf12.1 | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| curf12.y | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| curf12.g | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑌 𝐽 𝑍 ) ) | ||
| Assertion | curf12 | ⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) ‘ 𝐻 ) = ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑍 〉 ) 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfval.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| 2 | curfval.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 3 | curfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | curfval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 5 | curfval.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | |
| 6 | curfval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 7 | curf1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 8 | curf1.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) | |
| 9 | curf11.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 10 | curf12.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 11 | curf12.1 | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 12 | curf12.y | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 13 | curf12.g | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑌 𝐽 𝑍 ) ) | |
| 14 | 1 2 3 4 5 6 7 8 10 11 | curf1 | ⊢ ( 𝜑 → 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) |
| 15 | 6 | fvexi | ⊢ 𝐵 ∈ V |
| 16 | 15 | mptex | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) ∈ V |
| 17 | 15 15 | mpoex | ⊢ ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) ∈ V |
| 18 | 16 17 | op2ndd | ⊢ ( 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 → ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) ) |
| 19 | 14 18 | syl | ⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) ) |
| 20 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝑌 ) → 𝑍 ∈ 𝐵 ) |
| 21 | ovex | ⊢ ( 𝑦 𝐽 𝑧 ) ∈ V | |
| 22 | 21 | mptex | ⊢ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ∈ V |
| 23 | 22 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) → ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ∈ V ) |
| 24 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) → 𝐻 ∈ ( 𝑌 𝐽 𝑍 ) ) |
| 25 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) → 𝑦 = 𝑌 ) | |
| 26 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) → 𝑧 = 𝑍 ) | |
| 27 | 25 26 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) → ( 𝑦 𝐽 𝑧 ) = ( 𝑌 𝐽 𝑍 ) ) |
| 28 | 24 27 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) → 𝐻 ∈ ( 𝑦 𝐽 𝑧 ) ) |
| 29 | ovexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ∈ V ) | |
| 30 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → 𝑦 = 𝑌 ) | |
| 31 | 30 | opeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → 〈 𝑋 , 𝑦 〉 = 〈 𝑋 , 𝑌 〉 ) |
| 32 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → 𝑧 = 𝑍 ) | |
| 33 | 32 | opeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → 〈 𝑋 , 𝑧 〉 = 〈 𝑋 , 𝑍 〉 ) |
| 34 | 31 33 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) = ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑍 〉 ) ) |
| 35 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → ( 1 ‘ 𝑋 ) = ( 1 ‘ 𝑋 ) ) | |
| 36 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → 𝑔 = 𝐻 ) | |
| 37 | 34 35 36 | oveq123d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) = ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑍 〉 ) 𝐻 ) ) |
| 38 | 28 29 37 | fvmptdv2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) = ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) ‘ 𝐻 ) = ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑍 〉 ) 𝐻 ) ) ) |
| 39 | 9 20 23 38 | ovmpodv | ⊢ ( 𝜑 → ( ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) ‘ 𝐻 ) = ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑍 〉 ) 𝐻 ) ) ) |
| 40 | 19 39 | mpd | ⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) ‘ 𝐻 ) = ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑍 〉 ) 𝐻 ) ) |